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1 Introduction

1.1 Entropic solids

At the heart of the highest-temperature, highest-density ordered crystalline phase
of most materials lies a short-ranged, steeply repulsive inter-particle interaction
(for an early postulation of this fact, see Bridgman1). Although for most simple
molecular and atomic solids (metals, salts), the details of the attractive part of the
inter-particle potential determine the type of crystalline ordering, beyond a certain
density and at sufficiently high temperatures, there must be a crystalline phase for
any system with such a steeply repulsive interaction.

The crystalline phase is characterized by a spontaneous ordering of the particles
into regular arrangements. These arrangements can be thought of as consisting of
repeating unit cells containing one or more particles, i.e. with broken translational
and rotational symmetry. Surprisingly, the entropy of this phase can be higher than
the entropy of a fluid phase of equal density, as was found in some of the very
first applications of computer simulations in 1957 by Alder and Wainwright2 (with
molecular dynamics simulations) and Wood and Jacobson3 (who did Monte Carlo
simulations) on a system of hard spheres. These authors found that there is a first-
order phase transition from a fluid phase to a crystalline phase.

The phase behaviour of elastic hard spheres (i.e. particles with zero interaction
energy if they are separated by a distance more than the sum of their radii, and
infinite interaction energy if the distance separating them is smaller) is determined
solely by entropy: when the momentum part of the partition sum is separated out,
we are left with the configurational part which, for hard spheres, does not depend
on temperature (as the Boltzmann weight for any given configuration is either zero
— when particles overlap — or one). This means that only the number of config-
urations, i.e. the entropy, determines the free energy of the system. Solids of hard
spheres and of hard particles in general are therefore referred to as entropic solids.

The crystalline solid is not the only ordered phase that hard particles can form;4

for example, hard spherocylinders form nematic and smectic liquid crystals (par-
tially ordered phases with order in one and two dimensions, respectively).5 Possi-
bly, two-dimensional hard disks have a hexatic phase in which there is no transla-
tional order but six-fold orientational order.6 In general, for the class of lyotropic
liquid crystals, it can be said that the short-range steric repulsion is what usually
determines the phase behaviour at high densities.
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A AB

ABC

ABA

fcc

hcp

Figure 1.1: Layer stacking of spheres.

1.1.1 The Hard Sphere Solid

Because temperature is not a relevant thermodynamic variable for hard-particle
systems, the phase diagram of a system of hard spheres can be thought of as a
line; the phase coexistence between fluid and solid runs from a packing fraction
η = 0.49171, the freezing point of the fluid, toη = 0.54329, the melting point of
the solid.7

The thermodynamically stable hard sphere crystal forms the structure that was
conjectured by Keppler to be the closest packing of spheres, as has only recently
been confirmed.8 In this structure, the spheres form hexagonal layers (see Fig. 1.1)
which are stacked in such a way that the particles in each layer fit into the ‘holes’
of the preceding and succeeding layer.

As Fig. 1.1 shows, there are two distinct places where a succeeding layer would
fit into the ‘holes’ of a layer of closely packed spheres. If we were to label the first
layer to be at locationA, and the next layerB (here, choosing a different ‘hole’
would make no difference), thethird layer can either be back atA, or atC. The two
simplest repeating structures are thusABAB... andABCABC..., where the former
constitutes the hexagonal close packing (hcp) structure, and the latter is in fact a
face-centered cubic (fcc) structure.

The higher symmetry of fcc can be seen in Fig. 1.2. There, the cubic unit cell of
the fcc crystal is shown, with the hexagonally close packed layers of theABCABC
packing delineated by the lines that diagonally cross the faces of the cubic unit cell.

The relative thermodynamic stability of fcc vs. hcp, the free energy difference,
is extremely small: in the order of 10−3kBT per particle (see refs. 9, 10, 11 or
chapters 3 and 4). In practice, this will often cause the crystal to have random
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1.1 Entropic solids

Figure 1.2: The fcc unit cell. The cross-section of one close-packed layer is delin-
eated.

stacking: the entropy contribution of the choice in stacking will outweigh the bulk
free energy gains for smaller crystals.

1.1.2 Colloidal Hard Spheres

Hard spheres, and hard particles in general, are not just model systems. While it is
not possible to have hard interactions on the atomic scale, it is possible to prepare
colloidal suspensions that consist of effectively hard particles.

Colloidal suspensions are suspensions of particles in a size range from several
nanometers to about 1 micron; small enough to be subjected to thermal motion in
the form Brownian motion and with a thermal energy at least as high as the gravita-
tional energy of a few particle diameters, but big enough so that detailed knowledge
about the internal degrees of freedom of each individual colloidal particle is not im-
portant for the behaviour of the suspension.12

Colloids interact through a potential of mean force that makes it possible to treat
them as ‘giant molecules’; depending on density and temperature, a suspension can
show gas, liquid and crystalline phases, just like atomic and molecular systems. The
colloidal interaction can often be modeled by a screened Coulomb interaction to-
gether with dispersion forces, known as the DLVO — Derjaguin, Landau, Verweij
and Overbeek — potential.12,13 A distinguishing feature of the inter-particle po-
tential is an effective hard-core repulsion at short range and a soft attractive or
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repulsive interaction at intermediate ranges (and possibly a strongly attractive part
at very short ranges, causing colloidal aggregation under certain conditions).

The tunability of the inter-particle interaction (by, for example, manipulating
the salt concentration of the solvent to change the range for the screened Coulomb
interaction) of colloids makes them eminently suitable for studying the effect of
inter-particle forces on the phase behaviour. The fact that the particles themselves
are relatively large and usually well distinguishable from the surrounding solvent,
makes it feasible to perform real-space analysis of the equilibrium and dynamic
behaviour of these systems using microscopic measurement techniques.14

Colloidal suspensions are found in many common substances, ranging from
paints to biological systems. In nature, the particles are mainly found in fluid
phases, but there are some examples of crystalline colloidal systems in nature;
opals being the most well-known. Recently, the optical properties of colloids of
roughly the size of the wavelength of visible light, have started to become exploited
as a self-assembling photonic material; the crystalline phases are in principle well
suited to make large, visible light photonic band-gap materials.15

By, for example, grafting polymers to the surface of colloids, the effective po-
tential can be made to become harshly repulsive.16 Such ‘hard-sphere’ colloidal
suspensions have an equation of state that corresponds to the one found in computer
simulations.17,18,19,20 Hard-sphere colloids exhibit a first-order phase transition
from the fluid to a close-packed crystal structure.21 The exact type of close-packed
structure formed depends on experimental conditions but can partly be understood
from simulations (see, for example chapter 3 or Ref. 11).

An intrinsic property of many colloidal suspensions is that not all particles have
the same size (and possibly shape); they are polydisperse. Polydispersity influences
the equilibrium behaviour; possibly destabilising ordered phases, widening coexis-
tence areas and causing size fractionation.22,19,23,24Typically, for experiments on
hard-sphere colloidal suspensions, the polydispersity of the originally liquid col-
loidal suspension varies from 3% to 5%.

1.2 Disorder

This thesis focuses on the role of disorder on the equilibrium behaviour in entrop-
ically ordered phases, in particular the hard sphere crystal. Although potentially
important for applications of ordered colloidal systems like the already mentioned
photonic materials, there have, up to now, not been many studies on this subject,
which is not surprising given the experimental difficulties in obtaining measure-
ments of most of the types of disorder mentioned. The types of disorder considered
here are stacking faults, polydispersity, point defects, the possiblity of dislocation
unbinding in 2D and orientational disorder.

Chapter 3 and 4 describe the effects of stacking (fcc or hcp) on the hard sphere
crystal. Stacking faults, faults in stackings of close-packed layers which transform
part of the crystal from fcc to hcp or vice versa arise, as mentioned above, because
of the entropy gain in the choice of two layer types, and the low bulk free energy
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1.2 Disorder

differences involved. This type of stacking faults is not unique to hard spheres; for
example, there is a possiblity of this happening in Lennard-Jones potentials, where
for some densities the zero-temperature free energy differences between fcc and
hcp changes sign as a function of density and is in general in the order of 10−3kBT
per particle.25

Some experimental studies have been performed to establish the exact type of
stacking that spontaneously occurs under gravity26,27,28,29and in micro-gravity
conditions.30,31 In addition, it is possible to manipulate the boundaries of the de-
posited colloidal crystals to form pure fcc32 and even the metastable hcp.33

The study of the influence of polydispersity on solids has centered on the range
of stability of polydisperse crystals (the phase behaviour)23,34 and fractionation
effects.35,24 In experiments, the effect on the equation of state has been studied
by Phan et al.22 Chapters 4, 6 and 7 explore various aspects of the polydisperse
crystal.

Of the mentioned types of disorder, perhaps the most well understood is that of
point defects. Point defects play a key role in the dynamic behaviour of solids, with
their mobility being one of the principal agents of diffusion in crystalline solids36

(for an example, see Ref. 37). Applications of point defects include traditional
silver-based photography, where vacancy-interstitial pairs are created by electro-
magnetic radiation in the form of visible light in silver-halide crystals. The inter-
stitials then aggregate to stable clusters which after develompent, cause the image
to form.38 In hard sphere crystals, not much is known about point defect con-
centrations experimentally; computer simulations by Bennett and Alder39 give a
relatively high (in the order of 10−4) concentration for vacancies. Chapters 5 and 6
deal with the formation of point defects in hard sphere solids in equilibrium.

In two dimensions, the solid crystalline phase is at its lower critical dimen-
sion. Strictly speaking, there is no long-range translational order.40,41,6 There
is a universal melting mechanism, the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) melting scenario, which occurs when the free energy of free dislocations
becomes smaller than zero. This happens when the crystal is so ‘soft’ (elastic con-
stants are low enough) that the translational entropy of the dislocations becomes
higher than the cost in elastic energy. At this point, the crystalline phase should
go through two continuous phase transitions, with a liquid crystalline phase in
between: the hexatic phase. This melting scenario, although universal, need not
neccesarily occur because it can be pre-empted by a first-order phase transition.
For two-dimensional hard disks, it is, as of yet, unknown which of the two mech-
anisms takes place: KTHNY melting or a weak first-order phase transition. In
chapter 7, the introduction of polydispersity, which widens the coexistence gap in
three dimensions, is explored for two-dimensional hard disks.

Finally, in chapter 8, the equilibrium phase behaviour of a type of particle is
investigated which has a symmetry that is incommensurate with the symmetry of
the lattices it forms: the pentagon. The two-dimensional pentagon system forms
a hexagonal lattice at lower densities, but upon increasing the density, forms a
‘striped’ phase that closely resembles striped phases in elastic antiferomagnetic
spin systems.
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2 Technical Background

2.1 Computer Simulation: Free Energy Methods
in Solids

Particle-based computer simulations such as Monte Carlo (MC) or Molecular Dy-
namics (MD) simulations do not allow direct measurements of the accessible vol-
ume of the configurational phase space. As the entropy and, as a consequence, the
free energy, is determined by this volume, direct calculations of the free energy of
all but the smallest systems are impossible. However, it is possible to computedif-
ferencesin free energy. To compute such differences, one makes use of the fact that
derivatives of the free energy can be computed directly in a simulation. Imagine, for
instance, that the free energy of the system is known at one particular density. Then
we compute the free energy at another density by computing the density derivative
of the free energy: (

∂F
∂ρ

)
N,T

= NP(ρ)/ρ
2 (2.1)

whereP(ρ) is the pressure of the system at densityρ. By integration, we then find
the free-energy difference

F(ρ2)−F(ρ1) = N
∫

ρ2

ρ1

dρ

P(ρ)
ρ

2 (2.2)

This procedure is useful to obtain free energy differences between, for example, a
low density fluid (where the ideal gas laws apply) and a dense fluid. However, if
there are first-order phase transitions between the two states, then hysteresis makes
the compression effectively irreversible and the integration scheme fails.

Fortunately, in computer simulations, there is a wide choice of thermodynamic
integration schemes that are not limited to physically realizable transformations.
For instance, as Kirkwood first suggested (not in the context of simulations, how-
ever) that we can consider the free energy change associated with a change in the
interaction potential of the system. If the free energy of the system described by
one of these interaction potentials is known (or can be computed analytically) then
the free energy of the system described by the second potential energy function can
be computed by thermodynamic integration. To this end, we define a generalized
potential-energy function that is a linear∗ combination of the two potentialsUa and
∗The combination needs not be linear, but this route has certain computational advantages

7



2 Technical Background

Ub
U(λ ) = (1−λ )Ua−λUb (2.3)

The free energy of a system with this potential energy function is given by

F(N,V,T,λ ) = −kBT lnQ(N,V,T,λ )

=
∫

drN exp[−βU(λ )] (2.4)

Clearly,

∂F(λ )
∂λ

=
1

Q(N,V,T,λ )
∂Q(N,V,T,λ )

∂λ

=
∫

drN
∂U(λ )/∂λ exp[−βU(λ )]

Q(N,V,T,λ )

=
〈

∂U
∂λ

〉
(2.5)

which is equal to<Ub−Ua>. This quantity can be sampled in a normal simulation
(note that the outcome of Eq. 2.5 does not depend on the exact way in whichUa and
Ub are coupled in Eq.2.3). This means, that by integrating the thermodynamical
average of the derivative of the potential, we can get the free energy difference
between the systems with potentialsUa andUb.

2.1.1 Einstein Integration

One application of this thermodynamic integration is the transformation of a crystal
with an arbitrary potential energy functionU , to a model crystal with a known
free energy: the Einstein crystal. The Einstein crystal is a crystal consisting of
particles connected with harmonic springs to their respective lattice sites. It has a
configurational energy

Ue(rN) = 1
2

N

∑
i

α(r i− r0,i)
2 (2.6)

wherer0,i is the fixed lattice position of the lattice position to which particlei is
connected, andα is a spring constant. This gives us a free energy

Fe = −kBT ln
∫

drN exp

[
−β

1
2

N

∑
i

α(r i− r0,i)
2

]

= −kBT
dN
2

ln

(
π

αβ

)
(2.7)

whered is the dimensionality of the system.
Using the functional of Eq. 2.3 (orU(λ ) = U0 + λUei for hard spheres), there

would be a sharp peak ofU(λ ) asλ → 0, because the crystal as a whole is allowed
to explore the simulation box. This divergence can be removed by constraining
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2.1 Computer Simulation: Free Energy Methods in Solids

the system to have its center of mass fixed; the correction to the free energy of the
Einstein crystal is42,7

∆Fe,cm = Fe,cm−Fe =−kBT
d
2

ln

(
β

2
α

4π
2

)
(2.8)

and to the real crystal it is

∆Fcm = Fcm−F =−kBT ln
(

ρ

N

)
−kBT

d
2

ln

(
β

2πM

)
(2.9)

making the free energy of the crystal

βF
N

=
β

N

∫
dλ

〈
∂U(λ )

∂λ

〉
+

βFe

N
+

β∆Fe,cm

N
− β∆Fcm

N
(2.10)

or (expressed as excess free energyFex = F−Fid, with Fid the ideal gas free energy)

βFex

N
=

β

N

∫
dλ

〈
∂U(λ )

∂λ

〉
+

βFe

N
+

lnρ

N

− d
2N

ln

(
βα

2π

)
+

d+1
2

lnN
N

+ lnρ +1− ln2π

2N
(2.11)

The parameterα can be used to keep the value of∂U/∂λ as flat as possible over
the integration range to improve accuracy of the numerical quadrature.7 Careful
integration can yield results with an accuracy ofO(10−6kBT) per particle (see e.g.
chapter 4).

2.1.2 Lattice Switch

Another way to calculate free energy differences between statesa andb is by cal-
culating relative probabilities of finding the system in either of these states, which
are freely accessible to it. To this end, we define a Landau free energy with order
parameterλ

F(λ ,N,V,T) = −kBT lnQ(λ ,N,V,T)

= −kBT ln
∫

drN
δ

(
λ
′−λ (r)

)
exp
[
−βU(rN)

]
(2.12)

and we say thatλ belongs to stateq ∈ {a,b} if λ ∈ {λq}. Now the free energy
associated with stateq is the aggregate of the order parameter values belonging to
{λq}

F(q|N,V,T) = −kBT lnQq(N,V,T)
= −kBT ln ∑

{λq}
dλ
′Q(λ

′,N,V,T) (2.13)
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2 Technical Background

and the probability of finding the system in stateq is

P(q) = Qq(N,V,T)/Q(N,V,T) (2.14)

so the free energy difference betweena andb becomes

F(b|N,V,T)−F(a|N,V,T) = kBT ln
Qa(N,V,T)
Qb(N,V,T)

= kBT ln
P(a)
P(b)

(2.15)

which can in principle be obtained in a single simulation.
The difficulty now is to construct an ensemble that connects the two states of

interest with a suitable order parameter. The order parameter has to be such that
for a given value there should not be distinct and in practice mutually inaccessible
regions of phase space; these will cause sampling problems due to the finite na-
ture of simulations. An example is the ensemble used to calculate the free energy
associated with an interstitial in chapters 5 and 6, where the particle diameter of
one particle was allowed to vary between 0 and 1 and the probability of finding a
particle of diameter 1 was compared with the probability of finding a point particle.
This path between normal crystal to a crystal with an interstitial works because the
interstitial diffuses quickly on the time scale of the simulation, as does the point
particle (and the radii in between).

Another application of Eq. 2.15 is a direct method for comparing the free en-
ergy between two crystalline phases developed by Bruce and Wilding.10 In this
lattice switch method, originally applied to the fcc/hcp problem in hard spheres,
the particles are at positions

r i = Rq,i +di (2.16)

whereRq,i is the perfect lattice position for particlei anddi is the displacement
of the actual particle with respect to its perfect lattice position. Normal sampling
is done indi with an extra degree of freedom: the choice in lattice positionsRN

q,i ,
connecting two crystalline phases. Now statea is defined as having the set of lattice
positionsRN

a,i and state be as having the set of lattice positionsRN
b,i and free energy

differences can be calculated directly. This method is used in chapter 3 to compare
the free energy of a crystal with two interfaces between stacking types, to one with
four interfaces.

2.1.3 Multicanonical Sampling

It is to be expected that the probability of accepting a lattice switch as described
above is low. In general, there might be values forλ in Eq. 2.12 that have a high
free energy and therefore low probability, yet, we still need to sample those areas
of phase space to connect the states we are interested in.

The solution is to bias the Boltzmann distribution by simply making the low-
probabilityλ values more probable. We can add a weight factorW(λ ) to the free
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2.2 Elasticity

energy in Eq. 2.12 and sample

F ′(λ ,N,V,T,{W}) = F(λ ,N,V,T)+W(λ )

= −kBT ln
(

Q(λ ,N,V,T)exp[W(λ )]
)

= −kBT ln
∫

drN
δ

(
λ −λ (rN)

)
×

exp
[
W(λ )−βU(rN)

]
(2.17)

which means that the probability of a micro-state is now modified by an amount
depending on the order parameter valueλ ; instead of Metropolis sampling based
on the acceptance probability determined by min{1,exp(−β∆U)}, we sample with
acceptance probability based on min{1,exp[−β∆U + ∆W(λ )]}. With this biased
ensemble we sample a histogramP′(λ |N,V,T) from which we can unfold the bias
by

P(λ |N,V,T) ∝ P′(λ |N,V,T)exp[−W(λ )] (2.18)

to either get a free energy profile up to a constantF(λ ,N,V,T)+∆ =−kBT lnP(λ )
or a free energy difference from Eq. 2.15.

The smallest variance in values ofP′(λ ) is obtained when it is a flat distribu-
tion; i.e. whenW(λ ) = −exp[F(λ ,N,V,T)]. Now, F(λ ,N,V,T) is precisely the
quantity we are after, so it has to be approximated iteratively. Using the histogram
P′i (λ ) obtained from simulation iterationi, we get the new weights for stepi +1

Wi+1(λ ) = Wi(λ )− lnP′i (λ )+c (2.19)

Of course, this makes very little use of the information from previous steps and does
not take into account relative uncertainties; better methods for obtaining weights are
described in Ref. 43. In practice though, the simple updating scheme of Eq. 2.19
is quite effective for quickly exploring previously unsampled areas of theP(λ )
histogram, especially with a little over-damping.

Multicanonical sampling is applied to the lattice switch method for hard spheres
as follows: an overlap parameterMr(dN) is introduced which counts the number
of ‘virtual overlaps’: the number of overlaps one would have if one would switch
from the current underlying latticeRN

q,i to latticeRN
r,i . If q = r thenMr(dN) = 0, but

if it is not, it is usually bigger than zero. Now the order parameter which is used as
a basis of the bias is

L(rN) = Ma(rN)−Mb(rN) (2.20)

so a lattice switch is accepted only ifL(rN) = 0. Because of the multicanonical
sampling, this state is actually sampled and the switch is actually performed during
the simulation; a state with an unbiased probability ofO(10−150) for 1728 particles,
as can be seen in chapter 3.

2.2 Elasticity

Elasticity, the linear response of a solid body to an applied deformation, is impor-
tant not only for the study of the mechanics of materials: it also plays an important
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2 Technical Background

role in modeling the concentration of various types of defects. As will be shown
in Chapter 5, the equilibrium concentration of interstitials can be estimated using
a simple model involving a shear elastic constant. In addition, the free energy of
dislocations in 2D depends strongly on Young’s modulus, a combination of the
second-order elastic constants. If the 2D Young’s modulus drops below a certain
universal value, the free energy of free dislocations goes to zero and a continuous
phase transition can occur. This prediction forms the basis for the study of polydis-
perse disks in chapter 7.

In our daily experience, elasticity is the restoring force (stress) of a solid to an
applied deformation (strain). In a statistical mechanical sense, it is related to the
increase in free energy with applied strain. Imagine the particle coordinate of par-
ticle i in the undeformed system,r i

k, which are deformed through a homogeneous
deformation

r ′ik = αklr
i
l ≡ (υkl + δkl)r

i
l (2.21)

(where we employ the Einstein summation convention) with deformation matrix
αkl and displacement gradientυkl . Now, the free energy of a many-body system
should be rotationally invariant and the change in free energy upon deformation
can only depend on the change in the distances between particles. This implies that
the free energy should not be expressed as a function of the strainsαkl , but of the
Lagrangian strain parametersηkl. The Lagrangian strains are related to theαkl
through

ηkl = 1
2(αmkαml−δkl) = 1

2(υkl + υlk + υmkυml) (2.22)

The change indistancebetween any two particlesi and j (∆i j
k

= r i
k− r j

k
), can be

expressed in terms of the Lagrangian strains:

2ηkl∆
i j
k

∆i j
l

= (αmkαml−δkl)∆i j
k

∆i j
l

= αmkαml∆
i j
k

αmkαml∆
i j
l
−∆i j

k
∆i j

k

= ∆′i jm ∆′i jm −∆i j
k

∆i j
k

= ∑
m

∣∣∆′i jm

∣∣2−∑
k

∣∣∣∆i j
k

∣∣∣2 (2.23)

In other words, the change in distance between two particlesi and j only depends
on the original positionsrk and the Lagrangian strain parametersηkl ; in particu-
lar, the elastic free energy should depend on them. In an expansion around small
deformation, we can write

F(ηkl)/V = F(0)/V +Cklηkl +
1
2Cklmnηklηmn

+
1
3!

Cklmnopηklηmnηop+ · · · (2.24)

whereV is the density at zero deformation. The second-order elastic constants,
Cklmn are what is usually referred to as ‘the elastic constants’. (The valuesCkl
should either be 0 or reflect the imposed thermodynamic control parameters when

12



2.2 Elasticity

kl 11 22 33 23 or 32 13 or 31 12 or 21
α 1 2 3 4 5 6

Table 2.1: Voigt indices for elastic constants.

expanding around equilibrium to satisfy the requirement that the free energy should
be minimal at zero strain).

Apart from the strain, our daily experience with elasticity is connected to the
restoring force. The stress is the forcefk per surface areadsl ,

fk = Tkldsl (2.25)

and is, as is shown in appendix A, in free energy terms equal to

Tkl =
1
V ′

αkmαln

(
∂F

∂ηmn

)
(2.26)

Note that the components ofCkl are just the stress tensorat zero deformation, and
areCkl =−δklP for isotropic pressureP.

Using Eqs. 2.24 and 2.26, we can derive a generalization of Hooke’s law; ex-
panding the stress tensor around zero deformation

∂Tkl

∂αmn

∣∣∣∣
αkl=δkl

=
∂

1
V ′αkoαl p (∂F/∂ηop)

∂αmn

∣∣∣∣∣
αkl=δkl

=
∂J−1

αkoαl p

(
Cmn+ 1

2Cmnop[αqoαqp−δop]+ · · ·
)

∂αmn

∣∣∣∣∣
αkl=δkl

(2.27)

where we used the fact thatV ′/V = J = detαkl , (J is the Jacobian of the transforma-
tion αkl). Around zero deformationαkl = δkl , α

−1 = δkl andTkl = Ckl : a somewhat
tedious calculation gives us

∂Tkl

∂αmn

∣∣∣∣
αkl=δkl

= (Cknδlm +Clnδkm−Cklδmn)+Cklmn (2.28)

with Jacobi’s identity∂J/∂αkl = α
−1
kl J. A similar (but even more tedious) deriva-

tion can be done for the second derivative ofTkl to get terms containing the third-
order elastic constants, as is done in chapter 4. The inverse of the derivative† above
(the strain derived as a function of stress) defines the components of thecompliance
Sklmn:

Sklmn =
∂αkl

∂Tmn

∣∣∣∣
αkl=δkl

(2.29)

†This is only true in the case of isotropic pressure, see Wallace44 for details
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2 Technical Background

From the elastic free energy in Eq. 2.24, it is clear that not all 34 elastic con-
stantsCklmn, nor all 32 components ofCkl are independent. Becauseηkl is symmet-
ric and derivatives are independent, the components ofCkl , Cklmn, Cklmnop, etc. sat-
isfy theVoigt symmetry; for example

Cklmn = Clkmn = Cklnm = Cmnkl (2.30)

For shorter notation, we can instead use the Voigt notationC
αβ
≡ Cklmn, which

uses this symmetry to replace two indices with one Voigt index; see Table 2.1 for
the full list of Voigt indices. The values for 3D elastic constants in this thesis —
and in most literature on 3D elasticity — are reported using Voigt notation.

For systems with symmetries, such as the cubic symmetry of fcc and the hexag-
onal symmetry of hcp, the number of independent elastic constants can be further
reduced; for example, the values ofC11, C22 andC33 should be the same for fcc
in the frame of reference of its cubic symmetry. In total, there are only three in-
dependent elastic constants for fcc:C11, C12 and the shear elastic constantC44; all
other elastic constants are the same as the three above or zero (for exampleC14).
In two dimensions, the common hexagonal crystal has two elastic constants, just as
the isotropic case:45 C11 andC12.

2.2.1 2D Isotropic and Hexagonal Systems

For two-dimensional systems with hexagonal symmetry or isotropic systems, the
free energy expansion at isotropic pressure of Eq. 2.24 has only two independent
elastic constants and reduces — up to the second order — to

∆F(ηkl)/V = −P(η11+ η22)

+1
2C11(η

2
11+ η

2
22+2η

2
12)

+C12(η11η22−η
2
12) (2.31)

(note thatC44 = 1
2(C11−C12)), while, traditionally the free energy functional for

arbitrary deformation has been defined as

∆F(ukl)/V = −P(u11+u22)+ 1
2λL(uii )

2 + µLu2
kl

= −P(u11+u22)

+1
2λL(u2

11+u2
22+2u11u22)

+µL(u2
11+u2

22+2u2
12) (2.32)

with λL andµL as the bulk and shearLamé coefficients. Crucially,ukl is defined as
the Lagrangian strain without quadratic components of the displacement matrix

ukl = 1
2

(
υkl + υlk

)
(2.33)

When we expand Eq. 2.31 up to quadratic terms inυkl (for small deformations) we
get

∆F(ukl)/V = −P(u11+u22)
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2.2 Elasticity

−1
2P(u2

11+u2
22+4u2

12−2υ12υ21)

+1
2C11(u

2
11+u2

22+2u2
12)

+C12(u11u22−u2
12) (2.34)

which equates the Laḿe elastic constants to

λL +2µL = C11−P

µL = 1
2(C11−C12)−P = C44−P (2.35)

2.2.2 Computer Simulations

To calculate the elastic constants using molecular simulations, there are three basic
methods: direct free energy calculations, which directly calculate the free energy
change as a function of applied strain, stress-strain methods, where a system is
deformed and the stress response to the deformation is calculated, and fluctuation
methods.

Direct calculation of the free energy response to an applied strain has mostly
been performed as a validatory method, as in Ref. 46 and in chapter 4, and are
relatively expensive if the free energy is recalculated for each deformation.

The conceptually most straightforward way to calculate the elastic constants,
the stres-strain methods, measure the stress as a function of a small applied strain.
The second-order elastic constant are in this case a function of the derivative of
the stress as function of strain through Eq. 2.28. Typically, for hard spheres, the
maximum applied strain is less than 10−3 to keep the stress response linear enough
(for second-order elastic constants).

The stress tensor can be calculated in a simulation — similarly to the virial
pressure — with (see appendix A)

Tkl =
kBTδkl

V
− 1

V

〈
N

∑
i=1

f int,i
k r i

l

〉

=
kBTδkl

V
− 1

V

〈
N

∑
i=1

∑
j<i

U ′(r i j )
r i j
k

r i j
l

|r i j |

〉
(2.36)

where f int,i
k

is the total inter-particle force that particlei experiences on coordinate

indexk, the inter-particle distancer i j
k
≡ r i

k− r j
k
, andU ′(r i j ) = ∂U(r i , r j)/∂ r i j with

U(r i , r j) as the inter-particle potential between particlesi and j. For hard particles
(for which the inter-particle potentials are nondifferentiable) this can only be done
directly in an MD simulation, where a time average of the average momentum
exchange is equal to the average of the force47〈

N

∑
i=1

f int,i
k r i

l

〉
= lim

τ→∞

1
τ

∫
τ

0

N

∑
i=1

m
∂ pi

k

∂ t
r i
l dt

= lim
τ→∞

1
τ

∑
coll(i, j)

m∆pi j
k

r i j
l

(2.37)
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where∆pi j
k

= pi
k(t +ε)− pi

k(T−ε), the difference in momentum before and after a
collision involving particlesi and j, or zero if there was no collision. The last term
involves a sum over all collisions and uses Newton’s third law (∆pi j

l
= −∆p ji

l
).

Like for the pressure, the ensemble average of Eq. 2.36 can be approximated using
extrapolation of a radial distribution-like function48 for use in a MC simulation;
this method, however, is relatively cumbersome.

From the expansion of the free energy around the strain it could be noted that
the second-order elastic constants play the role of an inverse compressibility: just
like the inverse isothermal compressibility can be seen as a second derivative of the
free energy in the canonical ensemble:

1
κT

=− 1
V

(
∂P
∂V

)
T

=
1
V

(
∂

2F
∂V2

)
T

(2.38)

we have by definition from Eq. 2.24

Cklmn =
1
V

∂
2F

∂ηklηmn
(2.39)

(Incidentally, using Eq. 2.29 it is straightforward to show44 that the compressibil-
ity is κT = Skkll). This second derivative has been evaluated by Squire, Holt and
Hoover49 (following an original derivation by Born and Huang, but with cross-
terms) for the case of particles with pairwise interactions and becomes

Cklmn =
2NkBTδkmδln

2

+
1

VkBT

{〈
∑
<i, j>

U ′(r i j )
r i j
k

r i j
l

|r i j |

〉〈
∑
<i, j>

U ′(r i j )
r i j
mr i j

n

|r i j |

〉

−

〈
∑
<i, j>

U ′(r i j )
r i j
k

r i j
l

|r i j | ∑
<i, j>

U ′(r i j )
r i j
mr i j

n

|r i j |

〉}

+
1
V

〈
∑
<i, j>

U ′′(r i j )
r i j
k

r i j
l

r i j
mr i j

n

|r i j |2

〉

− 1
V

〈
∑
<i, j>

U ′(r i j )
r i j
k

r i j
l

r i j
mr i j

n

|r i j |3

〉
+

2NkBT
V

δknδlm (2.40)

where the term between braces contains fluctuations of the stress tensor. Similarly,
the fluctuations in the isotensic ensemble, in which the stressTkl is fixed and the
strain is allowed to fluctuate,50,51,52are related to the elastic constants:

Sklmn =
kBT
V ′
〈ηklηmn〉 (2.41)

The fluctuation methods use these relations to calculate all the elastic constants
in a single simulation. The oldest method by Squire et al.49 uses the stress fluctu-
ations of Eq. 2.40 in anNVT ensemble. Because this method needs derivatives of
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2.2 Elasticity

the inter-particle potential it can not be used directly for hard particles. An adap-
tation for hard spheres has been developed by Farago and Kantor53 which involves
taking a limit on an approximating potential.

Unfortunately, the fluctuation methods seem to suffer from equilibration prob-
lems52 or poor convergence54,55 due to slow relaxation of box size or microscopic
stress. The work of Sprik et al.,52 but also the quoted number of simulation steps
in other work46 seems to suggest that the stress-strain method is more efficient.

Appendix A: Force and the Stress Tensor

To make the connection between the stress tensor as defined in Eq. 2.25 and its ex-
pression in terms of the free energy in Eq. 2.26, we calculate the virtual work done
on an arbitrarily strained body when it undergoes a virtual deformation, following
Wallace’s44 derivation. We imagine an arbitrarily deformed material with particle
pointsr ′Nk bounded by a surfaces into volumeV ′, we define the stressTkl by the
force fk acting on surface elementdsl .

fk = Tkldsl (2.42)

undergoing a further, virtual displacement of the surface elementdsl with an a-
mount of∆r ′k. This virtual deformation corresponds to a virtual change in the dis-
placement gradientυkl (see Eq. 2.21) andαkl

r ′k + ∆r ′k = (δkl + ∆υkl)r
′
l

= (δkl + ∆υkl)αlmrm

= (αkl + ∆αkl)r l (2.43)

so∆αkl = ∆υklαkl . The deformation amounts to a virtual work of

fk∆r ′k = Tkldsl ∆υkmr ′m (2.44)

which, for the whole material, is the integral over the surfaces:

∆W =
∫

s
Tkl∆υkmr ′mdsl

=
∫

V′
Tkl∆υkldν

= V ′Tkl∆υkl

= V ′Tkl∆
1
2(υkl + υlk)

= V ′Tkl∆ηmnα
−1
mkα

−1
nl (2.45)

where we employed Gauss’s theorem from step one to two, the next-to-last step
can be done because the stress tensorTkl is symmetric and the last step because the
change in Lagrangian strain can be expressed in terms of∆υkl as

∆ηkl = 1
2(αmk∆αml + ∆αmkαml)

= 1
2(αmk∆υmnαnl + ∆υmnαnkαml)

= 1
2αmkαnl(υmn+ υnm) (2.46)
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Now, because for reversible changes

dU = dW+TdS (2.47)

we get for the canonical ensemble (F = U−TS)

dF/V ′ = Tklα
−1
mkα

−1
nl dηmn (2.48)

or

Tkl =
1
V ′

αkmαln

(
∂F

∂ηmn

)
(2.49)

which brings us back to theCkl of Eq. 2.24 at zero deformation.
We will now extend the virial theorem56 to give a microscopic definition of the

stress in terms of particle interactions. For this derivation it is convenient to use
time averages rather than ensemble averages; the ergodicity hypothesis

〈A〉 =
∫

dpNdrNA
(
pN, rN

)
exp
[
−βU(pN, rN)

]∫
dpNdrN exp[−βU(pN, rN)]

= lim
τ→∞

1
τ

∫
τ

0
A
(
pN[t], rN[t]

)
dt (2.50)

is a central concept in the connection of statistical mechanics to thermodynamics.
An example of a thermodynamic average is the connection between temperature
and mean particle momentum

1
3NmkB

〈
N

∑
i=1

pi
kpi

k

〉
= T (2.51)

Now, we will calculate the average of an extended Clausius virial equation

Vkl =
N

∑
i=1

f i
kr

i
l (2.52)

with f i
k as the total force experienced by particlei in directionk. The time average

of this quantity is

〈
Vkl

〉
= lim

τ→∞

1
τ

∫
τ

0

N

∑
i=1

f i
kr

i
l dt

= lim
τ→∞

1
τ

∫
τ

0

N

∑
i=1

m
∂

2r i
k

∂ t2 r i
l dt

= − lim
τ→∞

1
τ

∫
τ

0

N

∑
i=1

m
∂ r i

k

∂ t

∂ r i
l

∂ t
dt

= − 1
Nm

lim
τ→∞

1
τ

∫
τ

0

N

∑
i=1

pi
kpi

l dt

= −kBTδkl (2.53)
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where step two to three involves an integration by parts and Eq. 2.51 is used in the
last step, keeping in mind that velocities in each direction are uncorrelated. We
can now separate the forcef i

k into internal forces (from the interaction between the
particles) and external forces (from the interaction of the particles with the surface
s)

f i
k = f int,i

k + f ext,i
k

= ∑
j 6=i

∂U(r i j )
∂ r i j

r i j
k

|r i j |
+ f ext,i

k

= ∑
j 6=i

U ′(r i j )
r i j
k

|r i j |
+ f ext,i

k (2.54)

wherer i j
k
≡ r i

k− r j
k

and we assume the particles to interact solely through pair po-
tentials. The external forces are now given by the stress tensor as in Eq. 2.42 over
the surface areadsm, and areTkmdsm for thek coordinate index, so, using Gauss’s
theorem again (and assuming homogeneous stress over the volume)∫

s
Tkmr l dsm =

∫
V

Tkldν = VTkl (2.55)

which allows us to rewrite Eq. 2.53 as

Tkl =
kBTδkl

V
− 1

V

〈
N

∑
i=1

∑
j 6=i

U ′(r i j )
r i j
k

|r i j |
r i
l

〉

=
kBTδkl

V
− 1

V

〈
N

∑
i=1

∑
j<i

U ′(r i j )
r i j
k

r i j
l

|r i j |

〉
(2.56)

where the last step is done using Newton’s third law. This connects the microscopic
positions and inter-particle forces to the homogeneous stress tensor.
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3 Stacking Faults in Hard Sphere
Crystals

The freezing of hard spheres is one of the most dramatic illustrations that the
emergence of crystalline order can be entropy driven. Ever since the early sim-
ulations of Alder and Wainwright2 and Wood and Jacobson,3 hard-sphere freezing
has been studied extensively, both theoretically13,57,58,59and experimentally.60,61

Hard spheres can occur in two different crystal structures, face-centered cubic (fcc)
and hexagonal close-packed (hcp). These two phases differ in the stacking of the
hexagonal close-packed [111] layers. The fcc phase hasABCABC. . . stacking,
while the hcp phase hasABABAB. . . stacking. Of the two crystal structures, the
fcc phase is the most stable. Recent simulations suggest that, at the melting density
(ρ/ρ0 ≈ 0.736, whereρ0 is the density at regular close packing) the fcc phase is
more stable than hcp by an amount of the order of 90±20·10−5kBT per particle.9,10

As the free-energy difference between the two phases is very small, the sponta-
neous generation of stacking faults is quite common. In fact, recent experiments
on the crystallization of hard-sphere colloids under micro-gravity conditions or in
a density matched system found that randomly stacked hexagonal close-packed
(rhcp) crystallites were formed.30,31,26,27Yet, there is experimental evidence that,
in slowly grown crystallites, the fcc phase is favored over the hcp phase, and fcc
stacking of hexagonal close-packed [111] planes occurs with a higher than ran-
dom probability.62,31,26,27The aim of the present paper is to estimate the driving
force for the formation of a pure fcc phase from the randomly stacked phase. Us-
ing some simple assumptions about the rate of crystal growth, we can then arrive
at an estimate of the growth velocity of essentially pure fcc crystals from a poly-
crystalline mixture of randomly stacked crystals. Our main conclusion is that the
driving force, although weak, is large enough to account for a growth rate of fcc
crystals that is of the order of̊Angstrøms per second. In other words, for a typical
hard-sphere colloid, it would take months to transform a 1-millimeter crystallite
from rhcp to fcc. For a 50-100µ crystallite, the time would be days, rather than
months. The presence of gravity strongly influences the dynamics of crystal growth
and the resulting hard sphere stackings.26,27 Gravity may also be exploited by, for
example, using colloidal epitaxy; see Ref. 28 and Chapter 4 for an application and
its possible influence on stacking.

To estimate the rate at which the fcc phase grows from the rhcp phase, we need
to estimate the relative free energy of the latter. The free energy of the rhcp phase
contains several ingredients: first of all,∆ f = fhcp− ffcc, the difference in bulk free
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3 Stacking Faults in Hard Sphere Crystals

energies per particle of the pure fcc and hcp phases. Secondly, the interfacial free
energyγhcp−fcc, which is the measure of the additional free-energy cost to create an
fcc-hcp interface. And thirdly, the stacking entropy of the rhcp phase (kB ln2 per
plane). Although∆ f is known from recent simulations,9,10 its value has been sub-
ject to debate.58,59,9,10We therefore recomputed it using two different techniques.
We find that the different approaches do indeed yield the same answer. To compute
γhcp−fcc we used a lattice-switch Monte Carlo technique that is described in some
detail below. Finally, to estimate the actual growth rate, we make use of the version
of the Wilson-Frenkel law,63 as applied to colloids by several authors.13,57,60,61

3.1 Lattice Switch Monte Carlo

To compute the free energy of the fcc-hcp interface, we used the lattice-switch
method proposed by Bruce and Wilding.10 This method is particularly suited to
compute the free-energy difference between two different solid structures, pro-
vided they have the same number of degrees of freedom. As a test, we used the
same method to compute the free-energy difference between the bulk fcc and hcp
phases. In the lattice-switch simulations, we consider two realizations of the crys-
tal structure that are related through a simple one-to-one particle mapping. The
configuration of the system is denoted by an indexα. The particle positions in
configurationα (∈ {a,b}) are denoted by~Xα

i +~δi , where~Xα

i is the lattice position

for particle i in configurationα, and~δi is the displacement relative to its lattice
position. The different crystalline configurations differ in their lattice positions
~Xα

i , i = 1. . .N.
We can define a global partition function,Z(N,V,T) as the sum of the partial

partition functions for the different configurationsα:

Z(N,V,T) = ∑
α

Z(N,V,T,α) = ∑
α

∫
V

d~δi ∏
i

e−Φ(~δi ,α) (3.1)

whereΦ represents the configurational energy in unitskBT. If the system can
switch between different configurations by replacing the lattice positions~Xi but

retaining the displacements~δi , the probability of finding the system in configuration
α is

P(α|N,V,T) =
Z(N,V,T,α)
Z(N,V,T)

(3.2)

The Helmholtz free energy of configurationα is

fα ≡ N−1Fα ≡ N−1kBT lnZ(N,V,T,α) (3.3)

and the free energy difference between two configurationsα = {a,b} can be writ-
ten as

∆ f =
kBT
N

ln
P(a|N,V,T)
P(b|N,V,T)

(3.4)

The probabilitiesP(α|N,V,T) are sampled using the histogram method of Ref. 10.
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A
B
C

A
B
C

fcc fcc hcp hcp

fcc hcp fcc hcp

a

b

Figure 3.1: Side view of the two configurationsa andb between which the free
energy difference is calculated to calculate the interfacial free energy.
The configurations are divided into four pieces and the middle quarters
of the configurations are swapped so that configurationa has two in-
terfaces between fcc and hcp, and configurationb has four. Note that
the view is with the hexagonal layers upright and perpendicular to the
paper and that periodic boundary conditions are used.

For the calculations on the free energy difference between fcc and hcp struc-
tures we have used an fcc crystal as configurationα = a and an hcp crystal as
configurationα = b. To calculate the interfacial free energy between fcc and hcp
we have used a system where the layer stacking for configurationa is a crystal
which has the first half of its hexagonal layers in fcc stacking and the second half
in hcp. The stacking for configurationb has the middle two quarters swapped with
respect to configurationa, creating a crystal which has four parts: fcc, hcp, fcc and
hcp (See Fig. 3.1). In this situation, configurationa has two interfaces between fcc
and hcp stacking, andb has four (with periodic boundary conditions), while the
total size of the fcc and hcp parts remain the same.

We obtain the interfacial free energy density by computing the free energy dif-
ference between structuresa andb, and dividing this difference by the difference
in interfacial free area ofa andb.

3.2 Results

Most simulations were performed at a reduced density ofρ/ρ0 = 0.7778, (packing
fraction η = 0.5760), a density somewhat higher than the melting density. This
density was chosen because the system would become unstable at the melting point
due to the histogram method which was used, and the density ofρ/ρ0 = 0.7778 is
the same as in Ref. 10. In all simulations, periodic boundary conditions were used.

We first calculated the free energy difference per particle between fcc and hcp
stackings (∆ fhcp−fcc). In Table 3.1 we present our results. In the same table, we also
show show the free-energy difference at a reduced density of 0.736 (the melting
density), as computed by Bolhuis et al.,9 using the Einstein integration method58

. Our results appear to disagree with those of Bruce and Wilding.10 To verify
our results, we also performed an Einstein integration on the 1728-particle system.
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3 Stacking Faults in Hard Sphere Crystals

N ∆ ffcc-hcp(10−5kBT) method

12096 90±20 EI9

216 101±4 LS10

1728 83±3 LS10

5832 86±3 LS10

216 132±4 LS
1728 112±4 LS
1728 113±4 EI

Table 3.1: Simulation results on the free energy difference between fcc and hcp
structures of the hard-sphere crystal. The system size is denoted byN.
EI stands for Einstein integration, and LS for the lattice switch method.

However, our simulations were considerably longer than those of Ref. 10. The
results of these simulations agreed to within the (very small) statistical error with
the lattice switch method. We can use our results forN = 216 andN = 1728 to
estimate∆ fhcp−fcc in the limit N→ ∞. If we assume that finite-size corrections
scale as 1/N, then the results forN = 1728 are, to within the statistical error, equal
to the results for the infinite system.

The calculation of the interfacial free energy was performed on a 12×12×24=
3456 particle system particle system at a reduced densityρ/ρ0 = 0.7778. The total
length of the simulation was 2.21·1012 Monte Carlo cycles. The fcc-hcp interfacial
free energy was found to be 25.9±5.6·10−5kBT/σ

2, with σ the particle diameter.
In what follows, all free energies will be expressed in units ofkBT and all distances
in units of the particle diameterσ , unless otherwise noted.

3.3 Discussion

Using the numerical data presented above, we can estimate the free energy differ-
ence between the stable fcc phase and the rhcp phase. If we assume that the stacking
in the rhcp phase is truly random, then the free-energy difference per particle is

∆ frhcp−fcc = 0.5∆ fhcp−fcc +0.5γhcp−fccs0− ln2/Nlayer (3.5)

wheres0 is the surface area per particle (s0 = (
√

3/2)(ρ0/ρ)2/3
σ

2 ≈ 1.02σ
2, for

ρ/ρ0 = 0.7778) andNlayer is the number of particles in a single close-packed layer.
In Eq. 3.5, we have assumed that the interfacial free energy does not depend on
the density of stacking faults. This is almost certainly an approximation. How-
ever, as the stacking-fault free energy itself is small, the resulting error is probably
negligible. Our simulations suggest that for small crystals (less than a thousand
particles per plane) rhcp is more stable than fcc. Hence, only once the crystallites
have grown beyond this size (corresponding to lateral dimensions of some ten mi-
crons for real colloidal crystals) can the slow annealing towards the stable phase
commence. Let us therefore consider crystals that are sufficiently large that we can
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3.3 Discussion

ignore the stacking entropy. Then the driving force per particle to convert from rhcp
to fcc is 0.5∆ fhcp−fcc + 0.5γhcp−fccs0, which, in the present case, is approximately

equal to 6·10−4. Let us now consider the growth of fcc crystallites at the expense of
rhcp crystallites. It is plausible to assume that fcc crystallites grow where a [111]-
grain boundary of the fcc crystal is in contact with an rhcp crystal. In the case of
colloidal crystal growth from solution, the velocity of the crystal front is, to a good
approximation given by63,13,57,60,61

vcr =
ζD
Λ

(e∆µ/kBT −1) (3.6)

where∆µ is the chemical potential difference between liquid and solid,D is the
(short-time) self-diffusion constant in the dense colloidal suspension,Λ is a char-
acteristic distance over which a particle should diffuse in order to be incorporated in
the crystal, andζ is a factor of order one. In order to arrive at an estimate forvcr, we
assume that grain boundaries are liquid like, and the characteristic distanceΛ is of
the order of the particle diameterσ . Moreover, we replace∆µ by ∆ frhcp−fcc. For a

200 nm colloid, a typical value forD would beD≈ 2·10−10 cm2 s−1. The resulting
estimate forvcr is vcr ≈ 6 ·10−9 cm s−1. Hence, this rough estimate suggests that
it would take several months to grow a 1 mm fcc crystal, starting from a rhcp crys-
tallite. It is therefore hardly surprising that only random stacking was observed in
the micro-gravity experiments of Zhu et al.30 However, many studies of colloidal
crystallization last months or even years. The present analysis suggests that the
fcc crystallites observed under those conditions could indeed be ‘true’ hard-sphere
crystal fcc phases. A second conclusion is that small crystallites (containing less
than 303≈ 3·104 particles) will never become fcc-like. Intermediate-sized crystal-
lites (containing less than 1003 particles) can be fcc-like, but will always have an
appreciable equilibrium concentration stacking faults.

Recently, there have been several experiments focusing on hard-sphere stacking
and its aging.26,28,27All of these studies find that fcc is the most favourable stack-
ing; either it forms immediately under sedimentation28 or it forms through slow
annealing.26,27 Although gravitational stresses and small disturbances appear to
strongly favour fcc through what appears to be shear-melting of hcp,27 the density-
matched systems, unaffected by gravity, seem to regrow rchp crystals as fcc crystals
at a rate that is compatible with the rates predicted in this chapter.
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3 Stacking Faults in Hard Sphere Crystals
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4 Stacking and Elasticity

The simplest regular close-packed structures of hard, spherical particles are the
face-centered cubic (fcc) and hexagonal close-packed (hcp) structures (see Fig. 1.1
on page 2 and Fig. 4.1). Close to melting, the Helmholtz free energies of these
two crystal structures differ by less than 0.05% (see refs. 9, 10 and chapter 3). As
a consequence, hard-sphere colloids (the experimental realization of elastic hard
spheres) rarely crystallize directly into the more stable fcc structure. Rather, crys-
tallization initially results in the formation of a randomly stacked crystal.30,64 As
explained in chapter 3, the latter then slowly transforms to the stable fcc struc-
ture. However, purehcp crystals have recently been grown by colloidal epitaxy
on patterned templates.33 At a given density, not only the free energies, but also
the pressures and compressibilities of the fcc and hcp phases are very similar. One
might therefore be tempted to suppose that these two crystal phases are similar in
all their thermodynamic properties. Surprisingly, this is not the case. In this Letter
we present calculations of the elastic constants of fcc and hcp hard-sphere crystals.
We show that some of these elastic constants may differ by as much as 20%. As
a consequence, a moderate deformation of the hard-sphere crystal may change the
relative stability of the two crystal phases.

4.1 Lattice Symmetries and Elasticity

A homogeneous deformation of a solid can be described by the transformation
matrix αi j that relates the cartesian coordinatesx j of a point in the undeformed
solid, to the coordinatesx′i in the deformed solid:x′i = αi j x j , where summation of
repeated indices is implied. The (isothermal) elastic constants of a crystal are most
easily defined in terms of an expansion of the Helmholtz free energyF(N,V,T) in
powers of the Lagrangian strainsηi j :

44

F(ηi j )/V = F(0)/V +Ti j (0)ηi j + 1
2Ci jkl ηi j ηkl

+1
6Ci jklmnηi j ηklηmn+ . . . (4.1)

The Lagrangian strain parametersηi j are related to the deformation matrix through

ηi j ≡
1
2(αkiαk j−δi j ). In Eq. 4.1, the coefficientsTi j (0) are simply the components

of the stress tensor at zero deformation,Ci jkl are the second-order elastic constants,
Ci jklmn are the third-order elastic constants, and so on. For a system under hydro-
static pressureP, the components of the stress tensor areTi j =−δi j P.
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4 Stacking and Elasticity
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Figure 4.1: Sketch of the structures of the regular close-packed fcc crystal (left) and
hcp crystal (right). Inequivalent close-packed layers are labeled with
the letters A,B and, in the case of fcc, C. An fcc crystal hasABCABC. . .
stacking and an hcp crystal hasABABAB. . . stacking. Thec/a ratio
is the distance between two close-packed layers divided by the distance
between neighboring particles in a close-packed layer. The figures show
the definitions of thex,y andz directions referred to in the text.

The fcc lattice has only 3 independent elastic constants44 (C1111≡C11, C1122≡
C12 andC2323≡C44 in the coordinate frame of the cubic unit cell). In what follows,
we use this Voigt notation (Ci j ) to denote the second-order elastic constants.

In order to compare the elastic constants of the fcc and hcp crystals, we used the
coordinate system shown in Fig. 4.1, with thex andy directions in the hexagonal
planes and thez direction perpendicular to these planes. For hcp (with hexagonal
symmetry), there are six distinct elastic constants, five of which are independent.44

To make a term-by-term comparison of the fcc and hcp elastic constant, it is con-
venient to ignore the full symmetry of the fcc crystal, and only use the fact that
the crystal also has a lower rhombohedral symmetry. If the symmetry were re-
ally rhombohedral, the fcc crystal would have six independent elastic constants.
But, if we take the full fcc symmetry into account, only three are linearly indepen-
dent. The usual fcc elastic constants can be expressed as linear combinations of the
rhombohedral elastic constantsC′i j : C11 = 4C′11−3C′33, C12 = C′33+C′12−C′11 and

C44 = C′33−
1
2(C′11+C′12).

4.2 Simulations

We computed the elastic constants by calculating the stress response to a small
applied strain, using molecular dynamics simulations.65 At zero deformation, the
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4.2 Simulations

stress response of a system with isotropic pressureP is given by a generalization of
Hooke’s law:

∂Ti j

∂αkl
=
(

δi j δkl−δil δ jk−δ jl δik

)
P+Ci jkl (4.2)

For the MD simulations, we used the event-based MD algorithm with cell lists,
described by Rapaport.66 The pressure tensor is calculated as the time average of
the dyadic product of the collisional momentum exchange vector and the particle
separation vector for each two-particle collision.47

We performed simulations for a range of amplitudes of each type of deforma-
tion. The second-order elastic constants were deduced from the linear part of the
stress-strain relation. In principle, all elastic constants can also be calculated in a
single simulation using fluctuation methods.50,52,55 However, these methods suf-
fer from slow convergence.52 We found the stress-strain method to be the most
efficient.

For some deformations, we also computed the third-order elastic constants from
the second derivative of the stress tensor with respect to deformation:

∂
2Ti j

∂αrs∂αtu
= 2δtuδrsTi j +(δit δ jr + δir δ jt )Tsu

−δut(δir Tjs + δ jr Tis)
−δsr(δ jt Tiu + δit Tu j)
−δutCi jrs + δitCu jrs + δ jtCiurs

−δsrCi jtu + δirCs jtu+ δ jrCistu

+δrtCi jsu +Ci jrstu (4.3)

The third-order elastic constantsCi jrstu appear in the last term.
The simulations were performed on systems with 6×6×6 = 216, 12×12×

12 = 1728 and 24× 24× 24 = 13824 particles. The maximum applied strain at
lower densities was 4·10−3; higher densities required even smaller deformations
to keep the stress response linear. The simulation equilibration time was 1· 104

collisions per particle. Data were collected during typically 2·106 collisions per
particle for the 216 particle system, and 6·104 collisions per particle for the 13292
particle system. For each deformation, 8 simulations were done at different strain
amplitudes to check linearity of the stress response. The calculations of the stress-
strain curve for each type of deformation involved simulations totaling 6.4 · 109

collisions (one week on an Athlon 1600+ CPU). The measured elastic constants
between the melting point (packing fractionφ = 0.543297) and close packing are
given in tables 4.1 and 4.2.

At all densities, the values of the fcc and hcp elastic constants differ signifi-
cantly (see Fig. 4.2). The relative differences between the elastic constants appear
to remain approximately constant over the entire density range. The largest differ-
ence between fcc and hcp (up to 20%) was found forC′12. Yet, the compressibilities
of the two phases are identical to within the measurement error. For instance, at
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4 Stacking and Elasticity

φ N C′11 C′12 C′13 C′33
0.543 13292 fcc 90.51(6) 13.56(7) 7.51(7) 96.7(1)

hcp 87.39(8) 15.95(7) 7.7(1) 96.56(9)
hcp 87.0(1) 15.82(9) 7.83(8) 97.1(1)

0.543 216 fcc 90.50(8) 13.8(1) 7.57(8) 97.0(1)
hcp 87.39(7) 16.6(1) 7.56(9) 96.67(9)

0.550 216 fcc 99.41(9) 15.2(1) 8.4(1) 106.16(8)
hcp 95.88(6) 17.9(1) 8.6(1) 106.1(1)

0.576 13292 fcc 146.42(8) 21.86(7) 12.1(1) 156.1(1)
hcp 142.1(1) 25.64(7) 12.36(8) 155.78(9)

0.576 216 fcc 146.1(1) 21.8(2) 12.1(1) 156.3(3)
hcp 141.8(1) 25.8(1) 12.44(9) 156.1(4)

0.628 216 fcc 366.4(6) 51.6(4) 26.4(5) 392(1)
hcp 356.9(4) 60.3(6) 27.3(3) 390(1)

0.681 216 fcc 1463(3) 189(2) 89(2) 1563(3)
hcp 1423(3) 223(3) 97(1) 1559(2)

0.733 216 fcc 1.10(1) ·105 1.28(1) ·104 6.1(2) ·103 1.17(2) ·105

hcp 1.08(1) ·105 1.52(1) ·104 5.4(1) ·103 1.17(1) ·105

Table 4.1: Second-order elastic constants of fcc and hcp hard-sphere crystals
at densities between the melting point and close packing. The val-
ues for the hcp structure withc/a =

√
8/3 are shown in upright font.

The (almost identical) results for a fully relaxedc/a ratio (c/a =√
8/3

(
1−7.5·10−4

)
at φ = 0.543), are shown in italics.

φ N C′14 C′44
0.543 13292 fcc -8.77(4) 32.22(6)

hcp 0 33.79(4)
hcp 0 33.90(5)

0.543 216 fcc -8.75(6) 32.4(1)
hcp 0 35.0(1)

0.550 216 fcc -9.65(4) 35.76(4)
hcp 0 37.38(7)

0.576 13292 fcc -13.82(6) 52.33(5)
hcp 0 54.56(4)

0.576 216 fcc -14.3(1) 52.8(4)
hcp 0 54.9(1)

0.628 216 fcc -35.4(1) 133.7(2)
hcp 0 138.2(1)

0.681 216 fcc -145(2) 535(2)
hcp 0 557(2)

0.733 216 fcc −1.05(3) ·104 4.05(4) ·104

hcp 0 4.08(1) ·104

Table 4.2: Continuation of table 4.1.
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Figure 4.2: Relative difference∆ ≡ |C′fcc
ab −C′hcp
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ab between fcc and hcpC′11,
C′12 andC′13 elastic constants as a function of packing fractionφ . The
results shown were obtained in simulations of a system of 216 particles,
with c/a =

√
8/3. The curves only serve as guides to the eye.

melting: KT
f cc = 0.02422(5) vs. KT

hcp = 0.02424(5) (for 1728 particles). We com-
puted these compressibilities in two ways: (a) from the appropriate linear combi-
nation of elastic constants and (b) directly from the equation of state.67 The results
are the same, to within the statistical error. At the same density, the pressures of the
fcc and hcp phases are also very similar:Pf cc = 11.568(1) andPhcp = 11.571(1).
Finally, the free energies differ only by about 1.12(4) 10−3kBT per particle (see
chapter 3 and refs. 9,10).

The difference between the fcc and hcp elastic constants is surprising because,
already in 1967, Stillinger and Salsburg68 had pointed out that a simple free-volume
model predicts that the fcc and hcp elastic constants should be equal. However, they
also showed that pair and triplet correlation effects can lead to differences.∗ Still,
we were surprised by the magnitude of the computed differences, in particular for
C′12. To double-check our calculations of the elastic constants, we performed a
second, fully independent calculation where we directly computed the free energy
of the crystals in various states of deformation. The free energy of the (deformed
and undeformed) crystals was calculated using a 20-point Einstein integration.58,42

We found that the results obtained by the two methods were completely consistent.
For example, in Fig. 4.3, we show the results of the two calculations for free energy
change due to a deformation of the form

αi j =

 1+ ξ 0 0
0 1/(1+ ξ ) 0
0 0 1

 (4.4)

∗As the cell-cluster expansion converges poorly, its numerical predictions differ very considerably
(more than 100%) from the simulation data.
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Figure 4.3: Variation of the fcc and hcp free energy with deformationξ (see
Eq. 4.4). The symbols indicate the results of Einstein free energy cal-
culations (see text). The continuous curves were computed on basis of
the calculated second and third order elastic constants. The error bars
of the Einstein free-energy calculations are about one sixth the size of
the symbols. The two horizontal arrows show the predictions for∆ f
obtained by neglecting the third-order elastic constants.

fcc hcp
C′111 −2.0(1) ·103 −2.1(1) ·103

C′112 −7.3(9) ·101 −7.9(9) ·101

C′122 −3.2(9) ·102 −4.2(8) ·102

C′222 −1.71(8) ·103 −1.71(8) ·103

Table 4.3: Values for the computed third-order elastic constants at melting (φ =
0.54329). These numbers were obtained for fcc and hcp systems con-
taining 13292 particles.

To lowest order inξ , ∆F/V = (−2Txx+C11−C12)ξ
2, for this deformation. As

the figure shows, the differences in elastic constantsC′11 andC′12, for fcc and hcp,
are so large that a deformation of 1.2% is enough to make hcp more stable than fcc.
The free energy increase of the fcc phase due to a deformation of 2% is∆ f f cc =
1.93(1) ·10−2, while the hcp free-energy increase is only∆ fhcp = 1.66(1) ·10−2.
Fig. 4.3 also shows the effect of the third-order elastic constants. To within the
statistical accuracy of our simulations, the relevant third-order elastic constants (see
table 4.3), were found to be the same for fcc and hcp. Hence, they do not affect the
free energy difference between the two lattices.
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Figure 4.4: Left: the normalized fcc elastic constantsC11〈σ3〉, C12〈σ3〉 and
C44〈σ3〉 as a function of polydispersitys at the melting curve. Right:
‘reduced inverse compressibility’Cab/P as a function of polydispersity.

4.3 Polydispersity

In experiments on hard-sphere colloidal crystals, one has to live with the fact that
there is always a certain amount of size dispersity. In experiments on colloidal
crystals, the degree of polydispersity (the width of the particle size distribution) of
the fluid is typically between 3% and 5%;27,28,29,30the polydispersity in the crystal
is slightly, lower due to fractionation.23,24

In order to estimate the influence of polydispersity on the elastic constants of
the hard-sphere crystal, the semigrand-canonical ensemble was used:69 in this en-
semble, polydisperse systems can be conveniently sampled;23 it allows for quick
relaxation through Monte Carlo moves which alter the diameter of particles (for
details, see Chapters 6 and 7), obviating the need for diffusion to get a particle-size
equilibrated configuration of particles.

The incorporation of the particle sizes in the partition sum has, however, con-
sequences for the derivatives of the semigrand-canonical free energy; they become
derivatives not only of the particle position part of the partition sum, but also of the
particle diameter part. So, to be able to connect to experimentally obtained elastic
constants, we distinguish between ‘quenched’ and ‘annealed’ elastic constants: the
annealed elastic constants are the full second derivative of the free energy with re-
spect to strain as specified by Eq. 4.1. The quenched elastic constants, however, are
specified by the stress-strain relationship (Eq. 2.28 on page 13) of the polydisperse
system where the particle diameters are ‘frozen in’ when the strain is applied.

The quenched elastic constants correspond most closely to what one gets in
an experimental situation where particles are fixed to their lattice sites, while, us-
ing the semigrand-canonical ensemble simulations one would normally obtain the
annealed elastic constants. To be able to obtain the quenched elastic constants, a
hybrid MC (Monte Carlo) – MD (Molecular Dynamics) algorithm was used that
does not allow particle size relaxation of the deformed system.

This MC–MD algorithm does a normal semigrand-canonical Monte Carlo sam-
pling of an undeformed polydisperse hard sphere crystal and, at regular intervals,

33



4 Stacking and Elasticity

0 0.01 0.02 0.03 0.04 0.05 0.06
s

0

0.1

0.2

0.3

0.4

0.5

∆

C’
11

C’
12

C’
44

Figure 4.5: Relative difference in fcc and hcp elastic constants∆ ≡ |C′fcc
ab −

C′hcp
ab
|/C′fcc

ab as a function of polydispersity at melting.

performs a molecular dynamics simulation in a deformed box, using the particle
size distribution and particle coordinates from the MC simulation (Each MD simu-
lation is quickly equilibrated to properly achieve a Maxwell velocity distribution).
The algorithm effectively calculates the elastic constants of many realizations of a
polydisperse hard-sphere crystal in a normal canonical ensemble.

The results of such simulations applied to the fcc crystal at specific polydisper-
sities along the melting curve, for the normal fcc elastic constantsC11, C12 andC44
(normalized to mean particle size), is shown in Fig. 4.4. The polydispersitys is
defined as

s≡
√
〈σ2〉/〈σ〉2−1 (4.5)

The elastic constants stay relatively constant, especially when shown relative to the
pressure as a reduced inverse compressibility.

The relative difference between a few elastic constants as a function of poly-
dispersity is shown in Fig 4.5, similarly to Fig 4.2. It is clear that the errors in
the calculations are much larger due to the added complexity of the MC–MD algo-
rithm. It is, however, clear that — save for the higher polydispersities where the
errors are too large to conclude anything — the polydispersity does not seem to
affect the relative differences in fcc and hcp elastic constants substantially.

To address the question of the thermodynamic stability of fcc over hcp as a
function of polydispersity, thermodynamic integration was used from zero polydis-
persity to the terminal polydispersity of 5.8% (in the semigrand canonical ensem-
ble) along the melting curve. These showed up to a numerical precision of 10−5kBT
per particle, no change in the relative free energies per particle over the entire range
of polydispersity.
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4.4 Lattice Anisotropy

For the undeformed fcc system, all three diagonal components of the pressure ten-
sor are equal. However, this does not hold for a hcp system at the samec/a-ratio
(i.e. for the same spacing between the close packed [111]-planes). If we fix thec/a
ratio at the fcc value (

√
8/3) then the stresses exhibit a slight anisotropy. For the

13292 particle systemTxx andTyy are equal (as they should be):Txx =−11.587(1),
Tyy =−11.588(1). However,Tzz is significantly different:Tzz=−11.537(1). From
equation 4.1, we can derive what change in thec/a ratio is needed to make the
pressure isotropic. We find that, at melting, isotropy is restored for ac/a ratio
of
√

8/3(1−7.5(2) ·10−4). At higher densities, this value approaches the close-
packing valuec/a =

√
8/3, as can be seen in Fig. 4.6. Stillinger and Salsburg68

used the cell-cluster method to estimate the difference of the fcc and hcpc/a ratios.
Our simulations show that, close to melting, the effect is one order of magnitude
larger than predicted. Some hcp elastic constants reported in tables 4.1 and 4.2 were
computed at thec/a ratios where the stress tensors were isotropic. The free energy
difference between the equilibrium hcp and fcc crystals is only slightly changed by
this relaxation of the hcpc/a ratio: it becomes 1.050(5) ·10−3kBT per particle for
N = 13292 at melting.

As can be seen from the results forφ = 0.543 — where thec/a ratio differs most
from fcc — the effect of relaxingc/a to its equilibrium value, is barely significant.
For this reason, most hcp elastic constants in tables 4.1 and 4.2, were computed for
c/a =

√
8/3. The table also shows that the elastic constants depend somewhat on

system size, but the effect is too small to change the qualitative picture.
In colloidal-epitaxy experiments,33 the best hcp crystals were obtained when

the patterned template was stretched by 2.6% with respect to the expected lattice
spacing at the observed experimental packing fraction (φ = 0.68). The templates
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4 Stacking and Elasticity

used matched a ‘diagonal’ cut through thexy plane of Fig. 4.1. Together with
the stress produced by gravity (resulting in a strain perpendicular to the template
plane of−2.8%), this strain is comparable to the strain of Eq. 4.4 and would result
in a free energy difference of about 3·10−2kBT per particlein favor of hcp. The
present simulation results may help experimentalists in designing optimal templates
to grow selectively colloidal hcp or fcc crystals.

4.5 Conclusion

In this chapter we have shown that some elastic constants of the hard sphere fcc and
hcp crystals, when expressed in comparable coordinate systems, differ significantly
(up to about 20% forC′12). This difference seems not sensitive to either density or
polydispersity. This difference can be used to reverse the relative stability of fcc
over hcp by applying moderate strain (about 1.5%) in the correct direction.

In addition, the equilibrium lattice spacing of the hard sphere hcp crystal is
slightly different than the equivalent spacing in the fcc crystal. The difference in
c/a ratio is small (7.5 ·10−4) but significant and very slightly affects the relative
free energy. This free energy difference is not affected by increasing polydispersity.
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5 Point Defects in Hard Sphere
Crystals

Any crystal in equilibrium will contain defects, such as vacancies, interstitials and
dislocations. Of these, the point defects are the most common. Some thirty years
ago, Bennett and Alder39 estimated the equilibrium concentration of vacancies in
a hard-sphere crystal and found that, close to melting, this concentration could be
quite high (typically, one vacancy per 4000 lattice sites). At present, the question
of the concentration (and transport) of point defects in (colloidal) hard-sphere crys-
tals takes on a renewed — and now quite practical — significance. Apart from
the theoretical interest in hard sphere crystals as a model system, crystals from
colloidal particles, having lattice sizes comparable to the wavelength of light, are
being prepared and studied because of their potentially interesting photonic proper-
ties. Clearly the presence of even a small number of defects can have a pronounced
effect on the nature of photonic states in such materials. Moreover, as the accuracy
of free energy calculations increases, it is no longer permissible to ignore the con-
tribution of vacancies to the total free energy. The aim of the present chapter is to
review briefly the statistical mechanical description of a crystal with point defects.
This problem is not completely trivial, as the concept of a vacancy or interstitial is
inextricably linked to that of lattice sites. And lattice sites loose their meaning in
a disordered state. So, we should first address the question: when is it permissible
to count states with a different number of lattice sites as distinct? The answer is, of
course, that this is only true if these different states can be assigned to distinct vol-
umes in phase space. This is possible if we impose that every particle in a crystal
is confined to its Wigner-Seitz cell. In three dimensional crystals, this constraint
on the positions of all particles has little effect on the free energy (in contrast, in
a liquid it is not at all permissible). In a two-dimensional crystal, the constraint is
more problematic, at least in the thermodynamic limit. However, for large but finite
two-dimensional systems, the single-occupancy cell constraint is also quite reason-
able. Below, we describe two alternative (but equivalent) routes to arrive at the free
energy of a crystal with vacancies. In one case, we use the Grand-Canonical en-
semble. This would seems to be the most obvious ensemble to use when describing
a system with a fluctuating number of particles. Yet, the analysis is complicated by
the fact that not only the number of particles, but also the number of lattice sites,
may fluctuate. In the second analysis, we consider an isothermal-isobaric system.
The latter approach is simpler and is, apart from a minor correction, equivalent to
the one followed by Bennett and Alder.39 We then describe our numerical approach
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to compute the concentration of interstitials in a hard-sphere crystal. We compare
our numerical results with a simple theoretical estimate.

5.1 Free Energy of Vacancies

5.1.1 The Grand-Canonical Route

When considering the statistical mechanics of a crystal with vacancies, it is conve-
nient to consider first a system with a fixed number of lattice sites,M, contained in
a volumeV. If this crystal is in contact with a particle-reservoir at chemical poten-
tial µ, then the number of vacancies in the crystal may fluctuate. In principle, the
crystal could also contain interstitials but, for the time being, we shall ignore this
possibility. It is then easy to write down the expression for the grand potential of
the crystalΞ′:

Ξ′M =
M

∑
n=0

exp
[
(M−n)β µ

]
QM−n(V,T) (5.1)

whereβ ≡ 1/kBT. Note that this is not the true grand potential, because we should
also allow for fluctuations in the number of lattice sites. We denote the free energy
of a crystal withno vacancies byF(0) = −kBT lnQM. In practice, the equilibrium
concentration of vacancies in a crystal is very low. We shall therefore make the
approximation that vacancies do not interact. This assumption is not as reasonable
as it seems, as the interaction of vacancies through the stress field is quite long-
ranged. The assumption that vacancies are ideal makes it easier to compute the
canonical partition function of a crystal withn vacancies:

QM−n(V,T)≈ M!
n!(M−n)!

Q(n)(V,T) =
M!

n!(M−n)!
exp(−βF(n)) (5.2)

where we have used the notationF(n) to denote the free energy of a crystal withn
vacanciesat given positions. As the vacancies are assumed to be non-interacting, it
is clear that we can write

F(n) = F(0)−n f1 = M f0−n f1 (5.3)

where f0 is the free energy per particle in the defect-free crystal and -f1 is the
change in free energy of a crystal due to the creation of a single vacancy at a specific
lattice point∗. Combining Eqs. 5.1, 5.2 and 5.3, we obtain

Ξ′M =
M

∑
n=0

M!
n!(M−n)!

exp
[
(M−n)β µ

]
exp
[
−β (M f0−n f1)

]
≡ QM exp(Mβ µ)

[
1+exp

(
−β [µ− f1]

)]M

(5.4)

∗The choice of the minus sign in the definition will later turn out to be convenient.
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Usually, exp[−β (µ− f1)] is much less than unity. This allows us to write:

Ξ′M = QM exp(Mβ µ)exp

[
M exp

(
−β [µ− f1]

)]
(5.5)

Using

〈M−n〉=
∂ lnΞ′

∂β µ

the average number of vacancies follows as

〈n〉= M exp
[
−β (µ− f1)

]
(5.6)

Now, we should take into account the fact that, actually, the number of lattice sites
itself is not fixed but will adjust to the number of vacancies. The total grand parti-
tion function is therefore a sum over all states with different number of lattice sites
M′ = M + ∆M. In practice,∆M�M. We can then write

Ξ =
∞

∑
∆M=−∞

Ξ′M+∆M

Note thatΞ′ depends on bothM +∆M andµ. We now choose the reference number
of lattice sites such that in that particular caseµ is equal to the chemical potential
of the perfect lattice. That is:

F(0) +P(0)V = Mµ

We also introduce a rather strange quantity, namely the ‘grand canonical’ parti-
tion function of a perfect lattice with a fixed number of particles(M) : Ξ(0)

M
≡

QM exp(Mβ µ). Of course,Ξ(0)
M

is not a true grand-canonical partition function,
as the number of particles in this system is fixed. The Grand Canonical partition
function then becomes:

Ξ =
∞

∑
∆M=−∞

exp
[
−βF(0)(M + ∆M)

]
× exp

[
(M + ∆M)β µ

]
exp

[
(M + ∆M)exp

(
−β [µ− f1]

)]
(5.7)

We assume (as usual) that, in the thermodynamic limit,Ξ is dominated by the
largest term in the sum. Hence, we have to determine the point where the derivative
of Ξ with respect toM vanishes. To this end, we perform a Taylor expansion of the
exponent in Eq. 5.7 in powers of∆M. Note that for a perfect — defect free —
lattice

∂F(0)

∂M
=

∂F(0)

∂N
= µ (5.8)

and
∂

2F(0)

∂M2 =
∂ µ

∂N
=

1
N

∂P
∂ρ

(5.9)
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Moreover,

f1(M + ∆M) = f1(M)+
1
V

∂ f1
∂ρ

∆M +O(∆M2) (5.10)

By combining Eq. 5.8–5.10 we obtain

exp
[
−β (µ− f1[M + ∆M])

]
= exp

{
−β [µ− f1(M)]

}
×
[
1+

β

V

∂ f1
∂ρ

∆M +O(∆M2)
]

(5.11)

Note thatf1 = F(0)−F(1). Hence,

β

V

∂ f1
∂ρ

=
β

V

∂ f1
∂V

∂V
∂ρ

= β

V
N

(
P(0)−P(1)

)
≡ β∆P0,1/ρ (5.12)

where∆P0,1 is the difference in the pressure of two crystals withM lattice sites,
one with zero vacancies and the other with one vacancy (both in a fixed volumeV
and a temperatureT). As a consequence,

(M + ∆M) exp
[
−β (µ− f1[M + ∆M])

]
≈M exp

{
−β [µ− f1(M)]

}{
1+

∆M
M

+(β∆P0,1/ρ)∆M

}
(5.13)

Inserting the Taylor expansion in the expression forΞ, we obtain

Ξ = exp
[
−βF(0)(M)+Mβ µ

]
∑∆M exp

{
M exp

[
−β (µ− f1(M))

]
×
[
1+ ∆M

M +(β∆P0,1/ρ)∆M
]
− β

2
1
M

∂P
∂ρ

(∆M)2

}
(5.14)

It may seem inconsistent that we expand to second order in∆M in the last term of
Eq. 5.14 but only to first order in the preceding terms. However, as we show below,
we actually expand — consistently — to second order in the vacancy concentration.

We define the fractional change in the number of lattice sites,y, as

y≡ ∆M
M

(5.15)

Similarly, we define the vacancy concentrationx as

x =
〈n〉
M

= exp
[
−β (µ− f1)

]
(5.16)

Finding the maximum in the exponent is then equivalent to maximizing

− βM
2

(
∂P
∂ρ

)
y2 +Mx(0)

[
1+y(1+ βV∆P0,1)

]
(5.17)
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wherex(0) is the value ofx for ∆M = 0 andρs is the density of the ideal reference
lattice. The maximum value is at

y = x(0)
(1+ βV∆P0,1)

β

(
∂P
∂ρ

) (5.18)

and the maximum of the grand canonical potential is

Ξ≈ exp(−βF(0)(M)+Mβ µ)exp

Mx(0)+
M
2

x2(0)
(

1+ βV∆P0,1
)2

β

(
∂P
∂ρ

)
 (5.19)

Hence, the presence of vacancies increases the grand potential (as it should)and it
changes (increases) the number of lattice sites. However, ignoring terms of order
O(x2(0)), the vacancy concentration is still given by Eq. 5.6.

The next question is: how do vacancies affect the melting curve. Now our
definition of the reference system (i.e. the perfect lattice with the sameµ) turns out
to be convenient. Note that the Grand Canonical partition function is related to the
pressure by

βPV = lnΞ = βP(0)V +Mx(0)+O(x(0)2) (5.20)

Ignoring terms quadratic in the vacancy concentration, we find that the effect of
allowing for vacancies is to increase the pressure of the solid by an amount

∆P≈ x(0)ρskBT (5.21)

Let us assume that the liquid was in equilibrium with the perfect crystal at pressure
P and chemical potentialµ. Then it is easy to verify that the shift in the coexistence
pressure due to the presence of vacancies is

δPcoex=
−x(0)kBT
ρ
−1
l
−ρ

−1
s

(5.22)

and the corresponding shift in the chemical potential at coexistence is

δ µcoex=
δPcoex

ρl
(5.23)

Direct calculations of the vacancy concentration in a hard-sphere crystal at melt-
ing39 indicate thatx(0) ≈ 2.6 ·10−4. Hence, the increase in the coexistence pres-
sure due to vacancies isδPcoex≈ −2.57· 10−3 kBT/σ

3 (whereσ is the particle
diameter). The corresponding shift in the chemical potential at coexistence is
δ µcoex= −2.74·10−3kBT Note that this shift is very significant when compared
to the accuracy of absolute free-energy calculations of the crystalline solid.42
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5.1.2 The NPT Route

Bennett and Alder39 work with the Gibbs free energy rather than the Helmholtz free
energy. Their expression for the vacancy concentration is based on the analysis
of the effect of vacancies on the Gibbs free energy of a system ofN particles at
constant pressure and temperature. First, we definegvac, the variation in the Gibbs
free energy of a crystal ofM particles due to the introduction of a single vacancyat
a given lattice position

gvac ≡ GM+1,1(N,P,T)−GM,0(N,P,T)

= FM+1,1(VM+1,1)−FM,0(VM,0)+P(VM+1,1−VM,0) (5.24)

where the first subscript refers to the number of lattice sites in the system, and the
second subscript to the number of vacancies. In this equation we distinguishM, the
original number of lattice sites, andN, the number of particles, even though in the
present caseN = M. Let us write f1 (Eq. 5.37) as

− f1≡ FM+1,1(VM+1,0)−FM+1,0(VM+1,0)

Hence,

gvac = FM+1,1(VM+1,1)−FM+1,1(VM+1,0)+

FM+1,1(VM+1,0)−FM+1,0(VM+1,0)+

FM+1,0(VM+1,0)−FM,0(VM,0)+

P(VM+1,1−VM,0) (5.25)

The next step is to introduce a hypothetical defect free crystal withM lattice sites, at
the same pressure as the system withM +1 lattice sites. The volume of this system
isVM,0 = {M/(M+1)}VM+1,0.Similarly, the free energy of this hypothetical system
is FM,0 = {M/(M +1)}FM+1,0. Note also that

FM+1,1(VM+1,1)−FM,0(VM,0) =−P∆v− f1 + f0 (5.26)

where∆v≡ vvac− vpart is the difference in volume of a vacancy and a particle, at
constant pressure and number of lattice sites. Moreover,

P(VM+1,1−VM,0) = P(∆v+V/N) (5.27)

Hence, the Gibbs free energy difference associated with the formation of a vacancy
at a specific lattice site,GM,1−GM−1,0≡ gvac, is then

gvac = P(VM+1,1−VM,0)− f1 +(∆v+V/N)P+ f0
= P(VM,1−VM,0 +VM,0−VM−1,0)− f1 + f0
= P(V/N)− f1 + f0
= (P/ρ + f0)− f1
= µ0− f1 (5.28)
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5.1 Free Energy of Vacancies

where we have definedµ0 ≡ (P/ρ + f0). Now we have to include the entropic
contribution due to the distribution ofn vacancies overM lattice sites. This total
Gibbs free energy then becomes

G = G0(N)+ngvac+MkBT
( n

M
ln

n
M

+
[
1− n

M

]
ln
[
1− n

M

])
(5.29)

≈ G0(N)+ngvac+nkBT ln
n
M
−nkBT (5.30)

If we minimize the Gibbs free energy with respect ton, we find

〈n〉 ≈M exp(−βgvac)

where we have ignored a small correction due to the variation of lnM with n. If we
insert this value in the expression for the total Gibbs free energy, we find:

G = G0(N)+ 〈n〉gvac−〈n〉gvac−〈n〉kBT = G0−〈n〉kBT

The total number of particles isM− 〈n〉. Hence the Gibbs free energyper particle
is

µ =
G0−〈n〉kBT

N
= µ0−

〈n〉kBT
N

≈ µ0−xvkBT (5.31)

Thus the change in chemical potential of the solid is

∆µ =−xvkBT (5.32)

from which it follows that the change inpressureof the solid at fixed chemical
potential is equal to

∆P = xvρskBT (5.33)

This is equivalent to Eq. 5.21 above. Hence the Bennett-Alder scheme is equivalent
to the ‘grand-canonical’ scheme†

It should be pointed out that the variation in volume due to the replacement
of a particle by a vacancy can be computed either directly, in a constant-pressure
simulation, or indirectly by measuring the change in pressure in a constant volume
simulation. The two methods are related through the thermodynamic relation(

∂V
∂P

)
N,T

(
∂P
∂N

)
V,T

(
∂N
∂V

)
P,T

=−1 (5.34)

Noting that the number of vacancies isn = M−N, we can see that the change in
pressure with the number of vacancies for a fixed number of lattice sites, is

−
(

∂P
∂N

)
V,T

=
(

∂P
∂V

)
N,T

(
∂V
∂N

)
P,T

(5.35)

† In Ref. 39, a slightly different expression is found, but this is due to a small error in the derivation in
that paper.
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In particular, the pressure change due to one vacancy (i.e.∆P0,1 , defined in
Eq. 5.12) is

∆P0,1 = PM.0−PM,1 = ∆v

(
∂P
∂V

)
N,T

(5.36)

5.2 Computational Scheme

5.2.1 Vacancies

Numerically, it is straightforward to compute the equilibrium vacancy concentra-
tion. As before, the central quantity that needs to be computed is− f1, the change
in free energy of a crystal due to the creation of a single vacancy at a specific lattice
point. In fact, it is more convenient to consider+ f1, the change in free energy due
to the removal of a vacancy at a specific lattice point. This quantity can be com-
puted in several ways. For instance, we could use a particle-insertion method. We
start with a crystal containing one single vacancy and attempt a trial insertion in the
Wigner-Seitz cell surrounding that vacancy. Thenf1 is given by

f1 =−kBT ln

(
VWS< exp(−β∆U >

Λd

)
(5.37)

whereVWSis the volume of the Wigner-Seitz cell, and∆U is the change in potential
energy associated with the insertion of a trial particle. For hard particles

f1 =−kBT ln

(
VWSPacc(VWS)

Λd

)
(5.38)

wherePacc(VWS) is the probability that the trial insertion in the Wigner-Seitz cell
will be accepted. As most of the Wigner-Seitz cell is not accessible, it is more
efficient to attempt insertion in a sub-volume (typically of the order of the cell-
volume in a lattice-gas model of the solid). However, then we also should consider
the reverse move — the removal of a particle from a sub-volumev of the Wigner-
Seitz cell, in a crystal without vacancies. The only thing we need to compute in
this case isPrem(v), the probability that a particle happens to be inside this volume.
The expression forf1 is then

f1 =−kBT ln

(
vPacc(v)

Prem(v)Λd

)
(5.39)

Of course, in the final expression for the vacancy concentration, the factorΛd drops
out (as it should), because it is cancelled by the same term in the ideal part of the
chemical potential.

5.2.2 Interstitials

As in the case of vacancies, the calculation of interstitials centers around the cal-
culation ofgI , the free energy associated with introducing an interstitial into the
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system (in the NPT ensemble).gI can be expressed as a sum of two parts: the free
energy of introducing a point particle into the system (gins = −kBT ln < 1−η >,
whereη is the packing fraction), and the free energy of growing that particle to the
same diameter (σ0≡ 1) as the other particles (ggrow).

For the calculation ofggrow, we simulate an extended system consisting of a
lattice ofN particles with diameterσ0 = 1 on (or near) lattice sites and one extra
(interstitial) particle that has a diameterσI that can vary freely. We interpretσI as
an additional coordinate and, in this sense, the system that we are considering is an
extended system. The partition sum for the extended system is

Q(N +1,P,T) =
∫ 1

0
dσ
′ Q(N +1,P,T,σ ′) (5.40)

whereQ(N+1,P,T,σ ′) is the partition function for the isothermal-isobaric system
with one interstitial particle with radiusσ ′. The probability of finding the interstitial
particle with a specific radiusσ ′ = σI is

P(σI |N +1,P,T) =
∫ 1

0 dσ
′ Q(N +1,P,T,σ ′)δ (σI −σ

′)
Q(N,P,T)

=
Q(N +1,P,T,σI )
Q(N +1,P,T)

(5.41)

and the Gibbs free energyG(N + 1,P,T,σI ) of a system with an interstitial with
diameterσI is equal to

G(N +1,P,T,σI ) =−kBT lnQ(N +1,P,T,σI ) (5.42)

Thus, the free energy difference between a system with a pintails interstitial (σI =
0) and a full-grown interstitial (σI = 1) is

ggrow = G(N +1,P,T,1)−G(N +1,P,T,0)

= −kBT ln
Q(N +1,P,T,1)
Q(N +1,P,T,0)

= kBT ln
P(0|N +1,P,T)
P(1|N +1,P,T)

(5.43)

It is obvious thatP(σ |N + 1,P,T) can be very small for large values ofσI . In
order to get an accurate histogram forP(σI |N + 1,P,T), we have to use a biased
sampling scheme. We employ the method of umbrella-sampling/multicanonical
sampling,70,43where we associate a weightξ (σ) with σ , which we use while sam-
pling overσ :

P(σ |N +1,P,T,{ξ}) ∝ P(σ |N +1,P,T)eξ (σ)

If we sample over this distribution, we get a histogramP({σ}|N+1,P,T,{ξ}), for
which we can get the desired histogramP({σ}|N +1,P,T) by refolding the bias:

P(σ |N +1,P,T) ∝ P(σ |N +1,P,T,{ξ})e−ξ (σ)
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The weightsξ (σ) are obtained by iteratively running the system and calculating
(for the runi +1, from the results of runi)

ξi+1(σ) = ξi(σ)− lnP(σ |N,P,T,{ξi(σ)})+C

whereC is an arbitrary constant.43 This will make the histogramP({σ0}|N +
1,P,T,{ξ}) converge to a flat distribution over the accessible range.

5.2.3 Interstitial Type Discrimination

The fcc crystal has two types of possible places, or ‘holes’ in which interstitials
can reside: one of octahedral shape and one of tetrahedral shape. There are four
octahedral holes and eight tetrahedral holes in one fcc unit cell. To measure the
relative concentrations of interstitials in these two types of holes, it turns out it is
not possible to try to prepare the system in one hole and calculateggrow, because
during the course of a simulation the interstitial makes many hops.

In order to measure the relative occupation probability of the different holes,
the interstitial has to be traced. This is done by the following scheme: at the start
of the simulation, every particlei, except the original interstitial, is assigned to a
lattice positionRi . At fixed sampling intervals, the squared distance between the
original interstitial and the nearest lattice sites (δ

2
int,i = (r int −Ri)

2) is compared
with δ

2
i = (r i −Ri)

2. If δ
2
int,i < δ

2
i , the interstitial and particlei exchange identity

(i.e. the interstitial acquires a lattice positionRi and particlei becomes the intersti-
tial). Once we have identified the interstitial, it is straightforward to assign it to a
tetrahedral or octahedral hole.

5.3 Simulation Results

The free energy calculations were performed with 256+1 particle systems ( 4×4×
4 cubic fcc unit cells) at four different pressures. Different parts of the histogram
P({σ}|N,P,T,{η}) were calculated in parallel, and subsequently combined. The
calculation of the weights took about 20 iterations of 2·104 MC sweeps per CPU
on 5 CPU’s. Once the weights were known for one pressure, they could be used
as starting points for the other pressures, accelerating the weight calculation con-
siderably. Final calculations were done with approximately 20 iterations of 4·105

sweeps each (again on 5 CPU’s). The finalP(σ |N,P,T) histograms for all four
pressures are plotted in Fig. 5.1.

For the calculation ofµ at the different pressures, the results for the free energy
of the perfect crystal42 were used together with Hall’s71 equation of state. The
results are summarized in Fig. 5.2 and table 5.1. For one pressure (P = 11.7, the
coexistence pressure), we calculatedgI for a larger system (N = 8×8×8+ 1 =
2048+ 1) to check for finite-size effects; as can be seen from the results, these are
negligible. Using the interstitial type discrimination algorithm described above,
it was found that the (bigger) octahedral holes are far more likely to contain the
interstitial than the tetrahedral holes (see table .5.1).
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Figure 5.1: The normalized probabilityP(σ |N,P,T) of finding an interstitial with
radiusσ/2 for hard-sphere crystals at (reduced) pressures 11, 11.7, 12
and 13.

5.3.1 Interstitial Diffusion

When an interstitial is tracked, as described in section 5.2.3, an interesting effect
can be seen. As is shown in Fig. 5.3, the interstitial makes discrete ‘hops’. These
hops are from one octahedral hole to the other; the interstitial takes the place of a
lattice particle, which then in turn becomes the interstitial.

This hopping leads to a fast diffusion of the interstitial through the crystal;
Fig. 5.4 shows the mean squared distance (relative to the interstitial’s original po-
sition) as a function of the number of random particle displacements (MC cycles)
for a MC simulation with very small (relative to inter-particle separation) particle
displacement moves. In this case, the particles will move diffusively. When this
short-time self-diffusion is compared to the long time hopping diffusion, they turn
out to be nearly equal: for a step size ofl = 0.0008σ , the short-time self-diffusion
constant is72 Dself =

1
2d l2≈ 1.07×10−7

σ
2/step, while the long-time hopping dif-

fusion constant isDhop = 1.20× 10−7
σ

2/step. Because the diffusion is so fast,
particle diffusion through interstitials could be a major mechanism for particle dif-
fusion through the crystal, even when interstitial concentrations are low.

5.4 Analytical Estimate of the Free Energy of
Interstitials

As octahedral holes are the largest cavities in an fcc crystal, we limit our analysis
to these. The number of octahedral holes in an fcc crystal is equal to the number
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P 11.0 11.7 11.7 12.0 13.0
N 256+1 256+1 2048+1 256+1 256+1
η 0.536 0.545 0.545 0.548 0.559
µ 16.5 17.1 17.1 17.4 18.4

gI/kBT 29.9(1) 34.5(2) 34.7(2) 36.5(2) 44.1(3)
xI 1.5·10−6 2.7·10−8 2.4·10−8 5.6·10−9 7.2·10−12

het 0.087(6) 0.032(2) 0.079(9) 0.118(8)
C44 41 46 46 48 57
xI ,a 1.1·10−6 1.3·10−7 1.3·10−7 6.8·10−8 3.2·10−9

Table 5.1: Simulation results for the properties of interstitials in hard sphere crys-
tals. The values for the packing fractionη and the chemical potentialµ

were taken from refs. 42 and 71.gI is the free energy associated with
interstitial formation,xI is the interstitial concentration from the simula-
tions. het is the fraction of interstitials found in tetrahedral holes. The
values from the analytical estimate of section 5.4 are given asxI ,a, using
values for the elastic constantsC44 from ref. 65

of lattice sites, the derivation of the expression for the concentration of interstitials
is almost identical to the one for the vacancy concentration. Let us denote the
change in free energy associated with the introduction of an interstitial at a specific
octahedral site byfI . The concentration of interstitials is then

xI = exp
[
−β ( fI −µ)

]
(5.44)

In a static lattice,r0, the radius of such octahedral holes equals(
√

2/2− 0.5)a,
wherea is the nearest-neighbor distance. For a hard-sphere crystal at melting, this
radius equalsr0 = 0.229σ . Clearly, in order to fit in an interstitial, the cavity
has to be expanded. If we assume that the crystal is elastically isotropic (a fair
approximation for a cubic crystal) then the work needed to create a cavity of radius
r equals63

W = 8πµLr0(r− r0)2 (5.45)

whereµL is the shear Laḿe coefficient. How large shouldr be? Clearly, it should
be at least 0.5σ , otherwise the interstitial would not fit into the lattice. But, in fact,
it should be larger, because the interstitial particle itself requires some free volume
vF . We should therefore minimize the sum of the free energy of a particle in a
cavity of radiusr and the elastic energy required to create such a cavity. Using
vF = (4π/3)(r−σ/2)3, the expression for this free energy is‡

F(r) =−kBT ln
[
(4π/3)(r−σ/2)3

]
+8πµLr0(r− r0)2 (5.46)

‡ In what follows, we leave out the factor involving the de Broglie thermal wavelength, as it cancels
anyway in the final result.
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Figure 5.2:xI as a function of the reduced pressureP. The drawn line corresponds
to a fit of the formxI = exp(−6.1P+54)

Differentiating Eq. 5.46 with respect tor yields the following equation for the equi-
librium radius of the cavity:

−
3kBT(r−σ/2)2

(r−σ/2)3 +16πµLr0(r− r0) = 0 (5.47)

This yields the following equation forr

r2− (σ/2+ r0)r +
σ r0

2
−

3kBT
16πµLr0

= 0

and hence

rI =
σ/2+ r0

2
+

√
(σ/2+ r0)2

4
−

σ r0

2
+

3kBT
16πµLr0

(5.48)

Inserting Eq. 5.48 in Eq. 5.46 we obtain the expression for the total free energy of
an interstitial at a specific lattice site

fI =−kBT ln
[
(4π/3)(rI −σ/2)3

]
+8πµLr0(rI − r0)2 (5.49)

If we use the parameters for a hard-sphere solid at melting (µL ≈C44 = 4665), we
find that the predicted concentration of interstitials is approximately 1·10−7. Con-
sidering the crudeness of the approximations involved in deriving this result, the
agreement with the corresponding numerical estimate (xI ≈ 3 ·10−8) is gratifying.
However, at higher densities, the agreement becomes worse, possibly because it is
no longer justified to assume isotropic, linear, elastic behavior around an interstitial
(see table 5.1).
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Figure 5.3: Projection of the interstitial position during the simulation onto thexy-
plane. Note the horizontal and vertical ‘hops’ that correspond to octa-
hedral holes in the 100-oriented fcc crystal.
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Figure 5.4: Mean interstitial distance from the origin (〈∆r2〉) as a function of
MC cycle number for a MC simulation with small particle step size
(l = 0.0008σ ). The MC cycle number here corresponds to the number
of displacements in a random walk. The dotted line corresponds to the
fitted diffusion coefficient. The discrete nature of the interstitial ‘hop-
ping’ is clearly visible in the intermediate regime of 103–105 cycles.

In summary, we have shown that the equilibrium concentration of interstitials
in hard-sphere crystals is so low that most experiments will not be able to detect
them. We find that interstitials are quite mobile. This implies that interstitials that
are trapped during crystal growth should be able to diffuse rapidly to the crystal
surface. This information is good news for experimentalists trying to grow photonic
band-gap materials. On the other hand, colloidal hard sphere crystals will have a
high equilibrium concentration of vacancies. With the present accuracy of free-
energy calculations, vacancies yield a detectable change in the free energies, but
interstitials do not.
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6 Polydispersity and Point Defect
Concentrations

The experimental study of colloidal crystals is of interest for at least two reasons.
First of all, the possibility to design the building blocks of such crystals, allows us
to gain insight into the factors that determine the structure and kinetics of forma-
tion of crystalline materials. In addition, colloidal crystals are of interest because
of their potential application as photonic materials.15 To a first approximation, one
might view colloidal crystals as scale models of atomic crystals. But this analogy is
tenuous for several reasons. First of all, the intermolecular forces between colloidal
particles may be qualitatively different from those between atoms. Secondly, the
dynamics of colloidal matter is intrinsically different from that of atomic materials,
due to the presence of a solvent. Finally, unlike atomic materials, colloidal systems
are never completely mono-disperse. This polydispersity may have important con-
sequence for the phase behavior and structural properties of the colloidal crystals.
In addition, polydispersity can have an effect on the equilibrium concentration of
(point) defects in colloidal crystals. As defects may strongly influence the photonic
properties of colloidal crystals, a better understanding of the effect of polydisper-
sity on defect concentrations, may also be of practical relevance for the design of
photonic crystals.

This chapter describes a numerical study of the effect of polydispersity on the
concentration of vacancies and interstitials in hard-sphere colloidal crystals.

6.1 Simulation Methods

6.1.1 Semigrand Canonical Ensemble

To simulate the equilibrium properties of polydisperse hard-sphere crystals, we
used the semigrand canonical ensemble method.69,23 For a system with continuous
size polydispersity, the free-energy functional of the semigrand canonical ensemble
is given by:

Y(N,P,T,{∆µ}) = U−TS+PV +Nµ(σ0)−N
∫

dσ

[
µ(σ)−µ(σ0)

]
p(σ)

= Nµ(σ0) (6.1)

whereN is the total number of particles in the system,P is the pressure,T is the
temperature and the set{∆µ} denotes the differences betweenµ(σ), the chemi-
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6 Polydispersity and Point Defect Concentrations

cal potential of a species with diameterσ , andµ(σ0), the chemical potential of
an (otherwise arbitrary) reference species:∆µ(σ) ≡ µ(σ)− µ(σ0). As we are
dealing with hard-core particles, we choose our unit of energy to be equal tokBT.
p(σ) denotes the probability of finding a particle with diameterσ . The set of ther-
modynamic fields{∆µ} act as control parameters that determine the particle-size
distribution. In the present work, we assume a quadratic dependence of∆µ(σ) on
σ −σ0:

µ(σ)−µ(σ0) =−(σ −σ0)2/2ν (6.2)

The parameterν determines the degree of polydispersity. At infinite dilution, the
size distribution is directly given byp(σ) = cexp(−(σ −σ0)2/2ν). At finite con-
centrations, the size distribution cannot be inferred directly from the functional
form of ∆µ(σ). Both the average particle diameter and the actual polydispersity
s (defined throughs2 ≡ 〈σ2〉/〈σ〉2−1) must be determined in the semigrand en-
semble simulations. Once the functional form of∆µ(σ) has been specified, the
semi-grand partition functionΞ is a function ofN,P,T,ν andσ0.

Ξ(N,P,T,ν ,σ0) =
∫

dV
∫

drN
∫

dσ
N

exp

(
−β

[
PV +U

(
rN,σN)]−∑

i

(σi−σ0)2

2ν

)
(6.3)

The semigrand free energyY is related toΞ throughY =−kBT lnΞ. To sample the
configurations of the semi-grand ensemble, we use Metropolis-style Monte Carlo
sampling of all variables that characterize a given configuration of theN-particle
system. In addition to the usual trial moves that attempt to change the particle coor-
dinates{rN} and the system volumeV, there are trial moves to change the diameter
of a particle. As has been explained by Bolhuis and Kofke, it is computationally
more efficient to combine volume-changing moves with particle resizing moves.23

To calculate the chemical potential of the reference species, thermodynamic
integration was used. As a reference state, we took the monodisperse hard-sphere
crystal near coexistence, for which the free energy per particle is accurately known
through thermodynamic integration with the Einstein crystal as a reference.42 In
order to compute the change in free energy withP and ν , we make use of the
following thermodynamic relations:(

∂Y
∂P

)
N,T,ν

= V(
∂Y
∂ν

)
N,P,T

=
∫

dσ
′p(σ

′)
−(σ

′−σ0)2

2ν
2 (6.4)

The semigrand free energy of an ideal, non-interacting system of polydisperse par-
ticles, is

Yid = −kBT ln
∫

dVexp(−βPV)
∫

drN
∫

dσ
N exp

(
−∑

i

(σi−σ0)2

2ν

)
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6.1 Simulation Methods

= Nµid(σ0) = Gid−
NkBT

2
ln(2πν) (6.5)

We can now employ the following scheme to computeµex(σ0) by thermodynamic
integration, using as input our knowledge of the excess chemical potentialµex,0 of
a monodisperse hard sphere system at pressureP0:

µex(σ0) = µex,0 +
1
N

∫ P

P0

dP′
〈

V−
(N +1)kBT

P′

〉
+

1
N

∫
ν

0
dν
′
〈
−∑i(σi−σ0)2

2ν
′2 +

N
2ν
′

〉
. (6.6)

6.1.2 Interstitial Concentration

The methods that we used to calculate the concentration of point defects are similar
to those discussed in Chapter 5. We first consider the free energyYM,nV ,nI

of a
crystalline system containingM lattice sites,nV vacancies andnI interstitials. The
total number of particles in this system isN = M + nI − nV . It is convenient to
consider interstitials and vacancies separately.

By analogy to the derivation of interstitial concentrations in monodisperse sys-
tems of chapter 5, it is straightforward to show that the concentration of interstitials
(xI ) is given byxI ≈ exp(−βyI ), whereyI is defined asyI = YM,0,1−YM+1,0,0. It is
convenient to rewriteyI as

yI = YM,0,1−YM+1,0,0

= YM,0,1−YM,0,0 +YM,0,0−YM+1,0,0

= YM,0,1−YM,0,0−
[
µid(σ0)+ µex(σ0)

]
= YM,0,1−

[
YM,0,0 + µid(σ0)

]
−µex(σ0)

= yadd−µex(σ0) (6.7)

Hereyadd is the free energy difference between a system with one interstitial and a
perfect crystal plus one ideal (non-interacting) particle.

To calculateyadd, we simulate a crystal withM lattice sites andM +1 particles,
of which particle j has a scaled hard-core diameteraσ j . The diameter scaling
parametera can be varied during the simulation, so that we sample the partition
defined by

Ξ′M,0,1(M +1,P,T,ν) =
∫ 1

0
da ΞM,0,1(M +1,P,T,ν ,a) (6.8)

whereΞM,0,1(M + 1,P,T,ν ,σ0,a) is defined as in Eq. 6.3, but with configurational

energyU(rM,σM,aσ j). We stress that particlej differs from the other particles
only in the overlap criterion, not in the probability distribution that determines di-
ameter sampling: for the overlap criterion, the particle radius of this particle isaσ ,
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6 Polydispersity and Point Defect Concentrations

whereas its weight in the Semigrand chemical potential distribution of Eq. 6.2 is
still determined byσ .

During the simulation, we construct a histogramP(a|M,P,T,ν):

P(a|M +1,P,T,ν) =

∫ 1
0 da′δ (a−a′)ΞM,0,1(M +1,P,T,ν ,σ0,a)

Ξ′M,0,1(M +1,P,T,ν ,σ0)
(6.9)

With this histogram we can calculate

ygrow =−kBT ln
P(a = 1|M +1,P,T,ν ,σ0)
P(a = 0|M +1,P,T,ν ,σ0)

(6.10)

whereygrow is the reversible work needed to transform an interacting point parti-
cle (a=0) into a particle with a hard-core diameterσ j (corresponding toa=1). In
order to sample the full range ofa-values from 0 to 1, it is necessary to use bi-
ased sampling. We employed multicanonical/umbrella sampling70,43 to generate
P(a|M,P,T,ν ,σ0).

To obtain the total interstitial free energyyadd we must still add the free energy
change associated with the transformation of a non-interacting particle into an in-
teracting point particle. This free energy change is determined by the ratio of the
volumes accessible to the two types of particles:

yadd= ygrow−kBT ln〈1−η〉 (6.11)

whereη denotes the volume fraction of the defect-free hard-sphere crystal. It is not
necessary to confine the interstitial to a particular Wigner-Seitz cell, as interstitials
diffuse quickly through the system. If this were not the case, both the scaled and
the unscaled particle would have to be confined to a particular Wigner-Seitz cell (or
even, to one particular interstitial cavity).

6.1.3 Vacancy Concentration

For the vacancies, the concentrationxV is given byxV ≈ expyV , with yV as the
free energy difference between a defect-free system and a system with the same
number of particles, but with one vacancy:yV = YM+1,1,0−YM,0,0. We introduce
the analogous free energy toyadd:

yV = YM+1,1,0−YM,0,0

= YM+1,1,0−YM+1,0,0 +YM+1,0,0−YM,0,0

= YM+1,1,0−YM+1,0,0 + µ(σ0)

= YM+1,1,0−YM+1,0,0 + µid(σ0)+ µex(σ0)

= −
(
YM+1,0,0−

[
YM+1,1,0 + µid

(
σ0

)])
+ µex(σ0)

= −yrem+ µex(σ0) (6.12)

In this case,yrem is the free energy difference between a perfect crystal and a crystal
with one vacancy plus a non-interacting particle.
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6.2 Results

If we assume that we can sample a system which can switch one particle be-
tween being a normal particle (b = bn) and a non-interacting particle (b = bi), we
can introduce the equilibrium probabilityP(b|M,P,T,ν ,σ0):

yrem =−kBT ln
P(bn|M,P,T,ν ,σ0)
P(bi |M,P,T,ν ,σ0)

=−kBT ln
〈π(bi → bn)〉
〈π(bn→ bi)〉

(6.13)

where〈π(bi → bn)〉 is the mean transition probability fromb = bi to b = bn. Be-
cause a real particle can always switch to a non-interacting, particle, we can reduce
the expression foryrem to

yrem =−kT ln〈π(bi → bn)〉 (6.14)

Now 〈π(bi → bn)〉, the transition probability from a state of a system with a va-
cancy and a non-interacting particle to a perfect crystal, is related to the probability
Pins for the insertion of a (normal polydisperse) particle into the Wigner Seitz cell
associated with a vacancy:

−kT ln〈π(bi → bn)〉=−kBT(lnPins)

In practice, the simulation will consist of a collection ofM−1 normal particles
and one ideal polydisperse particle which we keep in the Wigner-Seitz cell of the
vacancy. We then do multicanonical sampling, biasing on the number of overlaps
that the ideal particle would create if it would be switched to a real particle, and
get Pins from the probability to create zero overlaps. This scheme is essentially
identical to that of Bennett and Alder,39 save for the multicanonical sampling.

6.2 Results

The simulations to calculate the point defect concentration were done at various
points along the melting line of polydisperse hard sphere crystals, as taken from
Ref. 23. The points chosen give a polydispersity of approx. 1.5%, 3%, 5% and
5.8%. The latter value corresponds to the maximum polydispersity attainable with
the chemical potential difference function used. Here, the polydispersitys is de-
fined as the normalized second moment of the particle diameter distribution

s≡
√
〈σ2〉−〈σ〉2
〈σ〉

(6.15)

All simulations were performed on 256(±1) particle systems (a cubic fcc 4×
4×4 lattice); a simulation of a larger system in the monodisperse case in Chapter
5 shows that this particle number is sufficient for the required accuracy. For the
(interstitial) calculation ofygrow, theP(a|M +1,P,T) histograms were divided into
5 windows for which simulations were run in parallel. The multicanonical biasing
weights were generated starting with the weights for the monodisperse case and
took 10 – 80 runs of 4·105 MC sweeps (Monte Carlo cycles per particle) per CPU
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Figure 6.1: Point defect concentration (x) versus polydispersity (s).

to refine. The final results were obtained using typically 80 runs of 4·105 sweeps
per CPU. In the case of vacancies there was one window for which about 20 runs
of 1 ·106 sweeps were needed to equilibrate the weights after which about 40 runs
of similar length were done for the final results. The equilibrium concentration of
the two types of point vacancies as a function of different polydispersities is shown
in Table 6.1 and Fig. 6.1.

The values ofµex(σ0), required for both the vacancy and interstitial concentra-
tion, were calculated using thermodynamic integration using the free energy differ-
entials of Eq. 6.4. Integration was done along theP-ν points shown in Table 6.1,
with 20 steps between each step and 1·106 averaging sweeps per step.

6.3 Discussion

The simulation results show a dramatic increase in the interstitial concentration
with increasing polydispersity, while the vacancy concentration remains roughly
similar over the full range of polydispersities. The increase in interstitial concen-
tration can be attributed to the size of the interstitials: if the particle size distribution
has non-zero width, the interstitials are smaller than the mean particle size in the
crystal, as is shown in Fig. 6.2. This size difference between interstitials and the
surrounding crystal is real: although the trial moves used in semigrand-canonical
simulations are unphysical, the resulting size distribution of interstitials is real.

The influence of the small particles on the interstitial concentration can be illus-
trated by looking at the free energy of formation of a vacancy as a function of size.
If we define a partial interstitial concentrationxI (σ), we can, as in Eq. 6.7, express
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ν 0 0.00025 0.001 0.004 0.0056
P 11.7 12.08 13.56 26.9 82.6
s 0 0.015562(3) 0.029974(7) 0.05213(3) 0.05755(5)
µex 17.071 17.418 18.308 24.350 37.516
〈σ〉 1 0.992 0.967 0.815 0.589
µex(〈σ〉) 17.1 16.9 17.8 20.1 22.5
η 0.54329 0.54522(8) 0.54641(6) 0.55726(6) 0.56997(6)
− lnPins 7.92(1) 8.098(9) 8.77(2) 13.68(4) 26.1(2)
xV 1.10(2) ·10−4 9.55(9) ·10−5 8.3(2) ·10−5 4.6(2) ·10−5 5(1) ·10−5

ygrow 32.2(1) 30.8(2) 29.5(2) 40.5(1)
xI 2.7(4) ·10−8 1.6(2) ·10−7 1.7(3) ·10−6 2.4(5) ·10−3 2.1(2) ·10−2

Table 6.1: Results for the vacancy and interstitial concentration for the polydisperse
hard sphere system. The interstitial concentration for the monodisperse
case was taken from Ref.73 All free energies are in units ofkBT and
the pressure is inkBT/σ

3
0 , with the errors in the last digit(s) shown in

brackets. Here,ν is the polydispersity control parameter (see Eq. 6.2),
η is the packing fraction,〈σ〉 is the mean packing fraction,s is the poly-
dispersity, as defined in Eq. 6.15,〈σI 〉/〈σ〉 is the mean interstitial size
relative to the mean particle size,Pins is the particle insertion probabil-
ity (see Eq. 6.1.3),ygrow is the free energy associated with growing an
interstitial (see Eq. 6.10),xV is the vacancy concentration andxI is the
interstitial concentration.

it in terms of the free energy of formationfI (σ) and the chemical potential:

xI (σ) = exp[− fI (σ)+ µ(σ)] (6.16)

Assuming that the total interstitial concentration is the integral of the partial con-
centrations:

xI =
∫ ∞

0
dσxI (σ) (6.17)

we can extractfI (σ), the free energy associated with creating an interstitial of size
σ , because we know the chemical potential distribution and the partial intersti-
tial concentration. The values forfI (σ) at the polydispersities from Table 6.1 are
shown in Fig 6.3. To be able to compare values offI (σ) over a large range of
σ/〈σ〉, the values forxI (σ) in this figure were obtained by fitting the values from
the simulations with locally skewed Gaussians

xI (σ)≈ aexp
[
−b(σ −〈σI 〉)

2−c(σ −〈σI 〉)
3] (6.18)

The fits work very well for the values ofσ which have been sampled during the
simulation, and should yield meaningful results for the range shown in Fig. 6.3.

The similarity in slopes and actual values of thefI (σ/〈σ〉) curves is striking;
it means that, for the full range of polydispersities at which a crystal is stable,
the partial interstitial concentration depends on the chemical potential distribution
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Figure 6.2: Normalized size distribution for the crystal and the interstitial for the
polydispersities of 3.0% (left,ν = 0.001) and 5.8% (right,ν = 0.0056)

and an interstitial free energy which seems to be only weakly dependent on the
polydispersity:

xI =
∫ ∞

0
dσ exp

[
µex−

(σ −σ0)2

2ν

+ κ

(
σ

2〈σ〉
− r0

)2

+ f 0
I

]
(6.19)

with κ = 741kBT/σ
2
0 , r0 = 0.338σ0 and f 0

I = 11.3kBT as fitted parameters from
the points in Fig 6.3. The last two terms in the exponent are our approximation
for fI (σ)and, although the form of this equation was taken from the analytical esti-
mate for the interstitial concentration of Eq. 5.49 of page 49 , which gives physical
meanings to the values ofκ andr0 and has reasonable agreement forr0, we stress
that, here,κ andr0 are simply fit parameters

The similarity in thefI (σ) can probably be attributed to the fact that the chem-
ical potential at the mean particle size does not change much much over the range
of polydispersities at the phase transition. As a consequence, the free energy asso-
ciated with the creation of an interstitial of a given size does not depend strongly
on polydispersity.

In the case of vacancies, similar considerations apply in a slightly different
form; the vacancy concentration depends on the chemical potential and the free
energy of removing a particle while keeping its lattice site. As argued above, they
both stay relatively constant at melting for increasing polydispersities which causes
the concentration of vacancies to remain roughly similar.

BecausefI (σ) hardly depends on the width and, presumably, the shape of the
particle size distribution, the small particle tail of the particle size distribution be-
comes crucial: those particles have the lowestfI (σ) and will form the most impor-
tant contribution to the interstitial concentration. For example, at the near-Gaussian
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Figure 6.3: Interstitial free energyfI (σ) for different polydispersitiess as a func-
tion of renormalized particle diameterσ/〈σ〉. The polydispersities
match those of Table 6.1. The crosses denote the means of the inter-
stitial sizes for the corresponding polydispersities.

polydispersity ofs= 5.2%, obtained by settingν = 0.004, practically all particles
with diameter smaller than 75% of the mean particle radius are interstitials. This
implies that the polydispersity, as measured by the second moment of the particle
size distribution in the liquid, isnot a good predictor for the interstitial concentra-
tion in the solid. Thetail of the particle size distribution in the liquid is hard to
measure, yet it is all-important for the interstitial concentration.

In summary, we have shown that for polydisperse hard-sphere crystals along the
melting curve, the interstitial concentration increases dramatically (going up to 2%)
while the vacancy concentration remains relatively constant. This can be attributed
to the fact that, with increasing polydispersity, there is an increasing probability
of finding a particle small enough to have an appreciable probability of fitting in a
hole of the underlying crystalline lattice.

This finding has practical implication for the preparation of colloidal crystals
from slightly polydisperse solutions. As the presence of interstitials may affect the
optical properties of colloidal crystals, it is important to control their concentration.
The present calculations show that the interstitial concentration depends sensitively
on thetail of the size distribution in the liquid phase. Hence, the polydispersity
as such does not provide a reliable criterion to predict interstitial concentrations.
Rather, it will be necessary to have an accurate representation of the functional
form of the tail of the particle-size distribution (in particular, on the small-σ side).
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7 Melting of Polydisperse Hard
Disks

In the 1930’s, Landau and Peierls showed that two-dimensional solids are qual-
itatively different from their 3D counterpart, as they lack long-ranged positional
order (see e.g. 40). However, 2D crystals do have long-ranged bond-orientational
order and, in this respect, they differ form the isotropic liquid phase where both
translational and bond-orientational order are short ranged.

In the 1970’s, Kosterlitz and Thouless suggested that the melting of two-dimen-
sional crystals may be quite different form 3D melting. In particular, they proposed
that melting in two dimensions may proceed via a continuous dislocation-unbinding
transition.

Kosterlitz and Thouless6,41showed that the free energy associated with a single
dislocation becomes negative when

K < 16πkBT (7.1)

whereK is the Young’s modulus of the crystal. At the point whereK = 16πkBT,
dislocation pairs can unbind and, as solid with free dislocations ‘flow’ under shear,
Kosterlitz and Thouless interpreted this temperature as the melting point. In a more
detailed analysis, Halperin and Nelson6 and Young,74 showed that dislocation un-
binding is not enough to complete the melting process. At the point where the
condition of Eq. 7.1 is first satisfied, the system undergoes a (continuous) transi-
tion from a 2D crystal to a hexatic phase. The hexatic phase is characterized by
short-ranged (exponentially decaying) positional order, but quasi-long-ranged (al-
gebraically decaying) orientational order: the positional order is destroyed by the
presence of the unbound dislocations. A second (continuous) phase transition is
required to transform the hexatic phase into an isotropic liquid with short-ranged
bond-orientational order.

The Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory makes pre-
cise predictions about the behavior of the correlation functions of both the transla-
tional and orientational order parameters. It should be stressed, however, that the
KTHNY theory describes only a possible scenario: it also possible that one or both
of the continuous transitions are first order, and even that there is a direct first-order
transition from the crystal to the isotropic fluid.

The KTHNY predictions sparked off an intensive search for real or model sys-
tems that would exhibit this two-stage melting process (for an early review see:
ref. 75. More recent examples can be found in refs. 76,77,78 and 79).
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7 Melting of Polydisperse Hard Disks

Surprisingly, however, there is still no satisfactory answer to the question whe-
ther the KTHNY scenario applies even to the simplest of all two-dimensional model
systems, namely hard, elastic disks. In fact, this system was the very first to be
studied in any computer simulation.80

The reason why it is difficult to determine the nature of the melting transition,
is that finite size effects tend to obscure the distinction between first order and
continuous melting in 2D systems (see ref. 75).

In the case of hard disks, the early work by Alder and Wainwright suggested
that the hard-disk melting transition was first order81 (in the very early work of
Metropolis et al.,80 the computing power was insufficient to draw meaningful con-
clusions about the nature of the melting transition). The hard-disk melting problem
was revisited many times after the suggestion of the KTHNY scenario, but the evi-
dence is still ambiguous. Evidence for continuous melting was reported in ref. 82,
while evidence for a first-order phase transition was presented in refs. 83,84,85,86.
In addition, several publications could not distinguish between the two scenar-
ios.87,88,89 More recently, there has been some evidence for the KTHNY sce-
nario90,91,92but, the matter still seems far from settled.

One possible route to tackle this problem would be to consider hard disks as
a special case of a more general class of systems, and study possible trends in the
phase behavior of this generalized model. In the present case, we consider the 2D
hard-disk system as a special case of polydisperse disks. In 3D hard spheres, the
melting transition is of first order. As the polydispersity is increased the difference
in volume fraction of the coexisting solid and liquid phases widens with increasing
polydispersity.23,34 One might expect similar behavior in two dimensions if the
solid-liquid transition would be of first order.

While polydispersity in two dimensional systems has been studied before, it
was in the context of melting by increasing size dispersity for Lennard Jones sys-
tems93 or in the context of a possible glass transition.94,95 In the present Chapter,
we examine the phase behavior of polydisperse hard disk systems.

7.1 The System

7.1.1 The Semigrand Canonical Ensemble

The model for polydispersity is based on the semigrand canonical ensemble;69 this
ensemble has previously been used to study the phase diagram of polydisperse
3D hard spheres.23,34 The semigrand canonical ensemble can be seen as a hybrid
version of the canonical ensemble and the grand canonical ensemble. It is char-
acterized by a thermodynamic potentialX that satisfies the following fundamental
thermodynamic relation96

dX =−SdT−PdV−
∫

N(σ)δ µ(σ)dσ (7.2)

Here S is the entropy of the system,T the temperature,P the pressure,V the
volume. N(σ)dσ denotes the number of particles with diameter betweenσ and
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σ + dσ andµ(σ) is the chemical of particles with diameterσ . We now add and
subtract a term containing the chemical potential of a reference speciesσ0∫

N(σ)δ µ(σ0)dσ = dµ(σ0)
∫

N(σ)dσ = Ndµ(σ0) (7.3)

from the complete differential:

dX =−SdT−PdV−Ndµ(σ0)−
∫

N(σ)δ∆µ(σ)dσ (7.4)

where we replaceµ(σ)− µ(σ0) with ∆µ(σ). We now perform a Legendre trans-
formation to a new ensemble that hasN as a thermodynamic control parameter
instead ofµ(σ0) (andP instead ofV).

dY =−SdT+VdP+ µ(σ0)dN−
∫

N(σ)δ∆µ(σ)dσ (7.5)

which, in explicit form becomes (with the Euler equation)

Y(N,∆µ(σ),P,T) = U−TS+PV +Nµ(σ0)−
∫

N(σ)∆µ(σ)dσ

= Nµ(σ0) (7.6)

The partition sum for this ensemble is

ϒ(N,∆µ(σ),P,T) =
∫

dσ
N
∫

dV
∫

dsN

exp
(
−β

{
PV +U(V,sN)−∆µ(σ)N(σ)]

})
(7.7)

with Y = −kBT lnϒ. For simulation purposes, the semigrand canonical ensemble
can be interpreted as one where there is a constant number of particles that can
change identity. This identity switching can be an extra move in a Monte Carlo
simulation; in a polydisperse mixture, this would amount to a particle size change
with an acceptance criterion based on the functional form for the chemical potential
∆µ(σ).

As in ref. 23, we use the following functional form for the chemical potential

∆µ(σ) =−
(σ −σ0)2

2ν
2 (7.8)

which, at zero density, will give a Gaussian particle size distribution according to
the partition sum of Eq. 7.7. In practice, the size distribution is Gaussian-like at the
densities of the crystalline phase.

7.1.2 Order Parameters

For the study of the properties of the phases and the phase transitions, some order
parameters have been used that are standard in the studying of 2D melting75 and
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7 Melting of Polydisperse Hard Disks

for which the KTHNY melting scenario makes explicit predictions.6 We define the
n-fold bond-orientational order atxi , the position of particlei, as

ψn(xi) =
1
Ni

Ni

∑
j=1

einθ j (x
i) (7.9)

whereNi is the number of neighbors andθ j(x
i) is the angle between an arbitrary

(fixed) axis and the line connecting particlei with its j-th neighbor; two particles
are neighbors if they share a Voronoi cell edge. For systems that tend to crystallize
into triangular lattices, the leading bond-order parameter is the one for whichn= 6.
The global value of the order parameter is simply the mean of the local values.

The positional order is measured using the static structure factorS(q) at one
specific scattering vectorq equal to a reciprocal lattice vector of a perfect crystal
with orientation and lattice spacing taken from the system. To check for hexagonal
crystalline positional order, the lattice vectora0 is set to its ideal value for a given
packing fraction:

a0 =

(
π/
√

12
η

)1/2

(7.10)

The crystal orientation is taken from the mean angle obtained from the global
hexagonal bond-orientational order parameter:

Ψ6 =
1
N

N

∑
i=1

ψ6(xi) (7.11)

which specifies the orientation of one of the six equivalent crystal axes within an
angular range 0≤ α < π/3. Once the average orientation of the nearest-neighbor
‘bonds’ a0 has been specified, it is straightforward to deduce the orientation of the
corresponding reciprocal lattice vectorG throughG ·a0 = 2π. The positional order
parameterζ of the crystal is then given by

ζ (xi) = eiG·xi (7.12)

Radial correlation functions of the order parameters are defined as

g6(r) = 〈ψ∗6(0)ψ6(r)〉/g(r) (7.13)

ζ (r) = 〈ζ ∗(0)ζ (r)〉/g(r) (7.14)

In two-dimensional systems,ζ is expected to decay to zero, either exponentially
(short ranged order) or algebraically (‘quasi-long ranged’). The KTHNY melting
scenario makes predictions for the decay of the orientational order in the hexatic
and phase:g6(r) ∼ r−η6 with η6→

1
4 at the melting of the hexatic phase into the

liquid phase.6,75
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7.1.3 Elasticity

Eq. 7.1 provides a very useful test to decide whether or not a 2D melting can be of
the KTHNY type. If we find that Young’s modulus drops below the ‘magical’ value
of 16πkBT in an otherwise stable solid, then it is very likely that this solid melts by
dislocation unbinding. Conversely, if we find that this magical value is only crossed
at densities where we know that the isotropic liquid phase is thermodynamically
stable, then it is reasonable to assume that melting is a first-order transition. Often,
however, the simulations do not provide a clear answer, as the point whereK =
16πkBT is located in the intermediate density regime that may either be a two-phase
region separating two stable phase, or the domain of the elusive hexatic phase.

The Young’s modulus is defined through the shear (λL) and bulk (µL) Lamé
elastic constants in 2D,

K =
4a2

0µL(µL + λL)
2µL + λL

≤ 16π (7.15)

wherea0 is the equilibrium lattice spacing. The Lamé elastic constants are related
to the second-order elastic constants (i.e. the elastic constants defined by the second
derivative of the free energy to the Lagrangian strain; see chapter 2), through

C11 = λL +2µL

C12 = λL

C44 = µL−P (7.16)

To calculate the elastic constants at different polydispersities, the hybrid Monte
Carlo – Molecular Dynamics method described in section 4.3 on page 33 was used.
However, when specifying elastic constants of a polydisperse system, we should
distinguish between ‘quenched’ and ‘annealed’ elastic constants. Quenched elas-
tic constants measure the second strain derivative of the free energy of a polydis-
perse crystal with a ‘frozen in’ size distribution: i.e. the particle-size distribution
is assumed not to respond to the deformation. In contrast, the ‘annealed’ elas-
tic constants measure the second strain derivative of the semi-grand potential. In
this case, the particle size distribution is assumed to respond to the deformation.
The quenched constants are the ones that are presumably measured in mechanical
experiments that probe the elastic deformation of a polydisperse solid. But the an-
nealed constants describe the equilibrium state of a deformed polydisperse solid.
In order to determine the critical value for Young’s modulus in a polydisperse 2D
solid, we computed the annealed elastic constants, as these determine the equilib-
rium behavior of the system.

The quenched elastic constants described in section 4.3 will be larger than the
annealed quantities, because of the concavity of the free energy. Hence the corre-
sponding ‘quenched’ Young’s modulus will only reach the instability limitK = 16π

at lower densities.
The strains used in the elastic constant determination were

α
1
i j =

(
1+a 0

0 1+a

)
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Figure 7.1: Calculated equations of state (with normalized pressure) for varying
polydispersity control parameterν . System size is 4012 particles.

α
2
i j =

(
1 b
0 1

)
(7.17)

with a as the (small) strain parameter. The resulting stress derivatives, according to
Eq. 2.28, give us

dT11

da
=

∂T11

∂α
1
11

+
∂T11

∂α
1
22

= C11+C12 = 2λL +2µL

dT12

db
=

∂T12

∂α
1
12

= C44+P = µL (7.18)

allowing us to calculate the Young’s modulus of Eq. 7.15.

7.2 Simulations

The simulations were performed on systems containing 59×68= 4012 particles,
with a chemical potential disitribution width (‘polydispersity’) parameterν (see
Eq. 7.8) varying betweenν = 0.00025 andν = 0.008. For higher values ofν
(higher polydispersities), the equilibration was exceedingly slow, even with the
combined volume–particle radius sampling: equilibration took 1.3×106 to 2.5×
106 MC steps per particle and data were sampled during 1×106 steps per particle;
around 20% of steps were devoted to particle radius steps. ForN = 4012, the
simulation time was 6–8 hours on an Athlon 1600+ CPU.

To speed up the simulation, the coupling between mean particle size and sys-
tem size is exploited to remove the global volume moves and simultaneous sys-
tem+particle size scaling was introduced. This improves the statistics of sampling
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Figure 7.2: Packing fractionη as a function of polydispersitys for varyingν . The
boundaries of the apparent density gap are shown as the solid lines;
the density gap of the monodisperse (s= 0) case is taken from data by
Jaster,88 with N = 4096. The dashed line shows the location of packing
fractions (with matching polydispersities) where is extrapolated to be
K = 16π; the gray area denotes an estimate of the size of the error.

considerably.23 It turns out that, in practice, a real simultaneous system+particle
size scaling is at least as fast as the analytical integration of the scaling part of the
partition sum also described in Ref. 23.

The resulting equations of state are shown in Fig. 7.1. From this figure, it is
clear that the phase transition, which is around packing fractionη ≈ 0.70 for the
monodisperse case,88,89,87shifts to higher packing fractions and higher pressures
with increasing polydispersity. Atν = 0.008, the system cannot be made to freeze
at all. A similar phenomenon was observed in Ref. 23. It is due to the choice of the
functional form for the chemical potential (Eq. 7.8). In addition, forν = 0.007, it
is extremely difficult to equilibrate the system properly in the vicinity of the phase
transition.

As is the case for 3D spheres, the liquid branches of the equations of state very
nearly superimpose.23 However, near the phase transition, the pressure appears to
increase slightly with polydispersity. Upon further compression, the system un-
dergoes a phase transition with an apparent density gap. However, because of the
relatively small system size, the presence of such an apparent density gap is also
compatible with continuous melting. We find that the density gap decreases with
increasing polydispersity.

In Fig. 7.2 we plot the variation in polydispersity upon freezing. As a measure
for the polydispersity, we use the normalized second moment of the particle size
distributions≡

√
〈σ2〉/〈σ〉2−1. In the same figure, the apparent density gap is
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Figure 7.3: Mean particle diameter〈σ〉 as a function of packing fractionη for the
different values of the polydispersity control parameterν .

also shown (the borders of the density gap shown here are simply the solid with the
lowest packing fraction and the liquid with the highest packing fraction found in
the simulations). As in the 3D case,23,34 the freezing point moves to higher volume
fractions as the polydispersity is increased and size fractionation is also increased.
But, whereas the density gap widens upon freezing in 3D, it appears, if anything,
to decrease in 2D (except for the possibly seemingly poorly equilibrated case of
ν = 0.007). Additionally, the maximum polydispersity at which the solid seems to
remain stable (around 8%) is considerably higher than in 3D (5.7%).

In the semigrand-canonical ensemble, the system equilibrates to a mean particle
size, dependent on pressure andν . Fig. 7.3 shows this mean particle size as a
function of packing fraction: the phase transitions show up as jumps in the packing
fraction, but not in the mean particle size. This means that there is no particle size
fractionation (the mean of the particle diameter distribution does not change) while
there is, as can be seen in Fig 7.2, polydispersity-fractionation (the width of the
particle diameter distribution changes).

An example of the behavior of the order parameters near the phase transition
is shown in Fig. 7.4. The positional and orientational order both increase sharply
(but not quite simultaneously) in the region of the phase transition, similar to what
one finds for monodisperse hard disks. Although the decay of the orientational
correlation functiong6(r) goes withr−

1
4 as predicted by the KTHNY scenario for

the hexatic at the hexatic-crystal transition, this seems to be a coincidence, because
a further simulation of the same configuration yields a different (but still algebraic)
decay rate. This indicates that the typical decay ‘time’ of fluctuations in the system
exceeds the typical length of the (rather long) simulations.

We stress that all observations reported thus far are consistent with either a
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Figure 7.4: Example of the decay of the orientational (left) and positional (right)
order parameters over the phase transition, forν = 0.006. The decay of
the positional order parameter,g6(r) goes asg6(r) ∝ r−

1
4 at the inter-

mediate pressureP〈σ2〉= 12.7. The positional order parameters decay
exponentially for both lower pressures.

KTHNY scenario or a weak first-order transition. The KTHNY scenario how-
ever, is based on the assumption that the concentration of bound dislocations in
the crystal phase is low; dislocation interaction is not taken into account and the
Kosterlitz-Thouless normalization is based on an expansion in the dislocation un-
binding length which may be unrealistically long for high dislocation concentra-
tions. We measured the concentration of bound dislocation pairs (see Fig. 7.5).
In the figure, we show the concentration of seven-coordinated particles. Because
in the crystal the number of eight or more coordinated particles is negligible, and
as the number of point defects turns out to be an order of magnitude lower than
the number of bound dislocations,89 the number of seven-coordinated particles is a
good measure of the dislocation count. At the melting point (the boundary of the
apparent density gap) the dislocation concentration varies from 1% to more than
3%. As the concentration of dislocation pairs depends sensitively on the disloca-
tion core energy, this suggests that the core energy is rather low. Note that a core
energy less than 2 to 4kBT is not compatible with KTHNY melting.97,98

7.2.1 Elastic Constants

The elastic constants were measured using the method described in section 7.1.3,
using simulations of 412 particles, equilibrating for 4×106 MC steps and 4×104

MD collisions per particle and measuring up 5×106 MC steps and 1.5×106 MD
collisions per particle. Earlier work89 had shown that the elastic constants are not
significantly affected by the presence of point defects such as vacancies. Away
from the KTHNY transition, the elastic constants are not very sensitive to finite-
size effects.84 Of course, this is not true close to a KTHNY transition, but this
will turn out to be less relevant for the present system because we always observe
melting before we get into the ‘danger zone’.
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Figure 7.5: Concentration of seven-coordinated particlesx7 (a measure for the num-
ber of dislocations) as a function of packing fraction relative to the
melting packing fraction (determined by the boundaries of the appar-
ent density gap).

The results of the simulations are shown in Fig. 7.6; here an exponential of
the Young’s modulus,κ = (1−16π/K)νKT , whereνKT is the Kosterlitz-Thouless
renormalization exponent, which has a value ofνKT ≈ 0.36963.6 This form is cho-
sen because close to the KTHNY transition, the Young’s modulus — expressed as
function of the difference between the packing fractionη and the packing fraction
at the KTHNY,ηKT — behaves as75

K
16π

=
1

1−c(η−ηKT)νKT
(7.19)

The measuredκ values are then fitted to a second-order polynomial. The results
for the monodisperse case (ν = 0) are similar to those by Wojciechowski and
Brańka84,46and by Bates and Frenkel.89

From the locations of theK = 16π line in Fig. 7.2 it is clear that the situation
with respect to the type of phase transition is, even for higher polydispersities,
similar to that of the monodisperse system; the points seem to follow — within the
statistical uncertainties — not only the loci of the phase transitions, but also the
position within the density gap.

7.3 Conclusion

In this chapter, we explored the effect of polydispersity on the nature of the 2D
melting transition is a system of 2D hard disks.
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Figure 7.6: Fractional exponent of the Young’s modulusκ = (1−16π/K)νKT with
νKT = 0.3696, for the different polydispersities, as a function of pack-
ing fraction. The lines are the fits to determine the locations ofK = 16π.

We find that the solid-liquid phase transition shifts to higher packing fractions
as the polydispersity increases, and that polydispersity fractionation takes place in
the region of the phase transition. The maximum polydispersity at which the solid
can be stable is larger than in 3D hard spheres.

The density-polydispersity gap, be it real or apparent, does not seem to increase
in size with increasing polydispersity. The fact that the points for whichK = 16π

appear to be located in the two-phase region, supports the assumption that the melt-
ing transition is first order. Even if this should not be the case, the high dislocation
concentration will presumably have an effect on the KTHNY predictions.
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8 Monte Carlo Study of Hard
Pentagons

In this chapter we consider the freezing of a liquid consisting of molecules that have
a shape that prevents close packing in a regular crystal. In particular, we consider
a two-dimensional system of hard pentagons. We have studied the phase behavior
of hard pentagons in isobaric and isotensic Monte Carlo simulations. On increas-
ing pressure the system first goes from an isotropic liquid phase to a rotator phase
on a triangular lattice. At higher pressures, it undergoes a first order phase tran-
sition at which orientational order sets in and the lattice is distorted, thus partially
accommodating the frustration due to the mismatch between particle and lattice
symmetries. The resulting phase is similar to the ‘striped’ phase in the compress-
ible antiferromagnetic Ising model on a triangular lattice.

8.1 Background

Shape is one of the main characteristics of molecules. Simple models, in which
molecules are represented by hard objects without any interaction apart from their
excluded volume, have been very successful in the analysis of the phase behavior
of liquids and liquid crystals.4

In this work we have investigated how a liquid behaves under pressure, if par-
ticle geometry does not ‘fit’ to the crystal structure, into which the liquid tends
to freeze. The simplest objects which fulfill this requirement are two-dimensional
pentagons. At low densities they act like hard disks, that form hexagonal structures.
At high densities the fivefold symmetry forbids hexagonal ordering.

A system of pentagons has already been studied in an ‘experimental simula-
tion’, by Duparcmeur, Gervois and Troadec.99 These authors studied the com-
paction of macroscopic hard styrene pentagons on a blowing air table. These pen-
tagons undergo thermal-like motion and experience, apart from hard pairwise pen-
tagonal interaction, a soft repulsion due to the hydrodynamics of the air flowing
from under the pentagons. This study focused on the high-density (presumably
close-packed) crystal and its defects; no mention of a rotator crystal was made and
information on the nature of any phase transition was experimentally inaccessible.

A model related to pentagons are hard pentamers, objects made from five cir-
cular disks arranged with their centers on the vertices of a pentagon. Those were
studied by Bránka and Wojciechowski in computer simulations and mechanical
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Figure 8.1: Sketch for the overlap algorithm.

simulations.100,101,102We will refer to similarities and differences of our results in
the respective result sections of this chapter.

We have performed isobaric and isotensic Monte Carlo simulations of hard pen-
tagons. In an isotensic simulation the pressure tensor is imposed instead of the
pressure. The system is allowed to relax to the pressure tensor by sampling the box
shape. Because the box shape is not necessarily rectangular, the system may form
crystalline phases that are not commensurate with a rectangular box.50,103,55

The order parameters, by which we have identified the structures obtained in
the simulations, are defined in section 8.2.2. In section 8.2.3 the numerical data are
presented and in section 8.3 we compare the freezing behavior to the transition in
the compressible antiferromagnetic Ising model on a triangular lattice. Section 8.4
sums up our conclusions.

8.2 Simulations

8.2.1 Overlap Criterion

The algorithm for the overlap criterion required for the Monte Carlo simulations,
consists of 3 steps (See Fig. 8.1 for details):

1. If the distancer between the pentagons is bigger than the diameter of the
outer circle,σ , the pentagons can’t overlap.

2. If r is smaller than the diameterσi = σ cosπ/5 of the inscribing circle, the
pentagons always overlap.

3. The edgeE of either pentagon which is closest to the center of the other
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pentagon (in this caseb) is sought. If this edge is inside the other pentagon,
the pentagons overlap, otherwise they don’t.

To test whetherE is inside the other pentagon, we can draw a line fromE in
any direction. If the line crosses a border of the pentagon an odd number of
times the point is inside, otherwise it’s outside. In practice we choose the line
to be horizontal, so we only have to check crossings of the line with border
pieces that have a biggerandsmallery coordinate of the ends.

8.2.2 Order Parameters

We computed several quantities that reflect positional or orientational ordering of
the system.

We define the local values of the order parameters at locationxi , which is the
location of pentagoni. The global orderA for the local order parametera(xi) is
then defined as

A =
1
N

∣∣∣∣∣∑i
a(xi)

∣∣∣∣∣ (8.1)

(we use absolute values because most order parameters have imaginary compo-
nents).

First, the particle orientational order parameterφn(xi) is defined as

φn(xi) = einθi (8.2)

whereθi is the angle between the orientation of pentagoni and an arbitrary fixed
axis.

For bond-orientational order we use

ψn(xi) =
1
Ni

∑
j

einθi j (8.3)

whereNi is the number of neighbours of particlei, the sum is over the neighbours of
i andθi j is the angle between an arbitrary fixed axis and the line connecting particles

i and j. This is one of the usual order parameters used in studying 2D melting.75

Two particles are neighbours if they share an edge in the Voronoi tessellation of the
collection of points that are the centers of the pentagons.

The positional order is measured using the static structure factorS(q) at one
specific scattering vectorq equal to a reciprocal lattice vector of a perfect crystal
with orientation and lattice spacing taken from the system. To check for hexagonal
crystalline positional order, the lattice vectora is set to its ideal value for a given
packing fraction:

a =
√

π

2
√

3η

(8.4)

The crystal orientation is taken from the mean angle obtained from the global
hexagonal bond-orientational order parameter:

Ψ6 =
1
N

N

∑
i=1

ψ6(xi) (8.5)
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Figure 8.2: PressureP versus packing fractionη : The equation of state shows two
discontinuities; one a low density (see the inset) and one a higher den-
sity. The dotted line is a scaled 2D hard-disk equation of state.

which gives an orientationα between 0≤α < π/3 on the complex plane. Together,
the lattice vector and the orientation give a reciprocal lattice vectorG through the
definitionG · (aeiα) = 2π. The hexagonal crystal positional order parameterζ now
is

ζ (xi) = eiG·xi (8.6)

The same order parameter with different reciprocal vectorq can be used for non-
hexagonal lattices.

To get an measure of the coupling between the local bond order and particle
orientation, the combined order parameter

φ
∗
mψn =

1
Ni

Ni

∑
j=1

ei(mθi j−nθi) (8.7)

was used.

8.2.3 Phase Behaviour

The simulations were performed with 4736 pentagons. Equilibration took 1.5 ·
106 MC steps per particle (sweeps) and production runs were of 1.0 ·106 sweeps.
Results are given in length units ofσ (diameter of pentagon perimeter) and energy
units ofkBT.

In Fig. 8.2, the pressureP is plotted versus the packing fractionη ; the fraction
of area covered by pentagons. There are two discontinuities in packing fraction
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Figure 8.3: Order parameters near the low density phase transition: The sixfold
bond orderΨ6 and the structure factor of the corresponding triangular
latticeS(qhex) increase.

which indicate phase transitions. While the second (higher density) phase transi-
tion seems to show a clear density gap, the nature of the transition is not so clear
for the first one. This situation is similar to the 2D hard disk melting scenario;
there it is difficult to decide on the basis of simulations of systems of finite size be-
tween a first-order phase transition and a KTHNY dislocation-unbinding melting
scenario involving a hexatic phase (see, for example, chapter 7 or refs. 6,75). Phase
transitions that appear to be first-order in the simulations can be compatible with
a continuous melting scenario in the thermodynamic limit. The similarity between
the present case of the low-density phase transition of the pentagons and the hard
disk fluid-solid phase transition can be seen in Fig. 8.2, where the scaled hard disk
equation of state is superimposed on the pentagon equation of state.

The density dependence of the order parameters in the vicinity of the low-
density phase transition, are shown in Fig. 8.3 . The sixfold bond orderΨ6 (solid
line) and the structure factor of the corresponding latticeS(qhex) (dotted line) in-
crease. As we shall see in the high-density crystal, the value of the structure factor
is a sensitive measure for the exact lattice type and indicates that it is hexagonal.

Fig. 8.3 also shows the absence of global 10-fold (and therefore 5-fold) orien-
tational order. The correlation of 10-fold order104

gΦ10
(r) = 〈φ ∗10(0)φ10(r)〉/g(r) (8.8)

is shown in Fig. 8.4: the decay of the orientational order is rapid and initially
exponential and the simulation box appears to be large enough relative to the decay
length of the orientational order.
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Figure 8.4: The orientational correlation functiongΦ10
(r) for the highest simulated

pressure of the low-density solid (P = 45, η = 0.820) and for the
lowest simulated pressure of the high-density crystal phase (P = 46,
η = 0.837). Beyondr approximately 10σ , the low-density values
merely show statistical noise.

Higher order orientational order that incorporates both the 5-fold symmetry of
the particles and the 6-fold symmetry of the lattice,Φ30, or the coupling of that
to orientational order (Φ∗30Ψ6), could not be distinguished from zero, presumably
because of the high sensitivity to thermal fluctuations (low Debye-Waller factor)
associated with such high-order orientational order parameters in two dimensions.

At the higher density phase transition (see Fig. 8.5) the bond orderΨ6 increases
further, but the corresponding structure factorS(qhex) drops to zero. The system
still has six-fold bond order, but the particles are no longer positioned in a regular
triangular lattice. At the same transition, 5n-fold orientational ordering sets in:
in particular,Φ10 grows strongly. However,Φ5 remains effectively equal to zero.
The reason why we observe only 10-fold (in general, 10n-fold) ordering is that the
particles align in ‘antiparallel’ fashion, cancellingΦ5 exactly.

Together with the absolute orientational order, the coupling between orienta-
tional and bond-orientational order, in this caseΦ∗10Ψ6 goes from zero to a finite
value at the transition. The structure that forms is a striped phase of antiparrallelly
packed pentagons, as the snapshot from Fig. 8.6 shows.

To our knowledge, there exists no proof that the regular arrangement of Fig. 8.6
(shown schematically in Fig. 8.7) is the densest possible pentagon packing on a
plane, but it has been conjectured by Henley105 that this is, in fact, the case. Our
simulations, and the experiments by Duparcmeur et al99 spontaneously form this
arrangement at the highest pressures. The arrangement itself, as shown in Fig. 8.7,
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Figure 8.5: Order parameters near the (higher-density) rotator–crystal phase transi-
tion.

is a distorted hexagonal packing with a unit cell of size

acp
x = σ

5+
√

5
8

≈ 0.905ahex
x

acp
y = σ

√
9
32

(
5+
√

5
)
≈ 0.824ahex

x (8.9)

in which two particles are located at

r0 = (0,0)

r1 =
(

σ

[
1
16

+
3
16

√
5

]
,
acp

y

2

)
(8.10)

with a maximum packing fraction of 0.92131.
Figure 8.5 also shows the density dependence of the appropriate structure factor

S(qcp) for this type of distorted hexagonal lattice. The figure clearly shows that this
order parameter starts to grow at the phase transition. In addition we also followed
the behavior of the ‘aspect-ratio order parameter’, defined as

α = 1−
(

ay

ax
−

acp
y

acp
x

)/(
ahex

y

ahex
x
−

acp
y

acp
x

)
(8.11)

whereax anday are the measured lengths of the unit cell edges corresponding toacp
x

andacp
y in Fig. 8.7.ahex

x andahex
y are the equivalent hexagonal unit cell dimensions.
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Figure 8.6: Partial snapshots from the three phases. On the left the fluid phase, in
the middle the rotator crystal and to the right the high-density crystal.
The pentagons are shaded according to their absolute orientation.

This order parameter goes from 0 to 1 as the lattice distorts from hexagonal to the
close-packed structure, as can be seen in Fig. 8.5.

Upon compression, the system in the rotator-phase forms a close packed crystal
with a large concentration of defects in the form of ‘kinks’ in the stripes of the
parallelly aligned pentagons, similar to what the pentagon packings of Duparcmeur
et al.99 showed. In addition, hysteresis prevents crystallization until pressures are
well beyond those at which the crystal melts.

The size of the density gap, the hysteresis and the jumps in order parameter val-
ues (especially the one inα) strongly suggest a first order phase transition between
the rotator phase and the close packed crystalline phase. Given the large number of
particles involved it is unlikely that it is a finite size effect.

8.3 The Elastic Antiferromagnet on a Triangular
Lattice

Ising antiferromagnets — Ising models with a positive spin-spin coupling constant
J — are often used as models of the order–disorder transition in alloys. ‘Ordering’
in an alloy usually implies that unlike particles tend to be neighbours, just as neigh-
boring spins tend to align antiparallel in an antiferromagnet. However, in alloys
with a face-centered cubic (fcc) lattice, this type of ordering leads to frustration, as
antiferromagnetic order does not ‘fit’ the fcc structure: the lattice cannot be filled
up with alternating rows of up and down spins in all directions. This ‘frustration’
results in the formation of a disordered ground state.

The two-dimensional analog of this problem, the antiferromagnet on a com-
pressible triangular lattice, has been studied extensively.106,107 In this model, spins
are free to move around their lattice position and the neighbouring spin-spin inter-
action parameterJ(i, j) is a function of the distance between the spinsi and j. In
addition, there is a linear elastic term in the Hamiltonian with the strain depending
on the spin positions, introducing the additional requirement of a slowly varying
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ay
cp

ax
cp

Figure 8.7: Close packing: pentagons pack onto a distorted triangular lattice. The
unit cell is shown as the rectangular area with darker shades; its dimen-
sions and particle positions are given by Eq. 8.9 and Eq. 8.10, respec-
tively.

displacement field. It has been shown that the coupling to lattice distortions allevi-
ates the frustration and allows for the existence of an ordered ground state.107 This
new phase, the ‘stripe’ phase, has two broken symmetries: the Ising symmetry and
the three-state symmetry of bonds in the underlying lattice.

The transition to this stripe phase has been found to be strongly first order under
the assumption of a mean strain field.107 When fluctuations in the spin positions are
taken into account, the transition is still strongly first order for low values for the
spin-displacement coupling constant relative to the elastic constants, but becomes
weakly first-order for higher values of the spin-displacement coupling constant.108

The high-density phase transition in the pentagon system resembles this transi-
tion. Frustration due to the mismatch in particle and lattice geometry is removed
by straining the lattice into the non-hexagonal, striped phase shown in Fig. 8.6 and
Fig. 8.7. Here, the symmetries that are broken are the ’left-right’ symmetry (the
direction where a pentagon corner is pointing in a bond direction) and a three-fold
symmetry involving the choice of direction of the stripes. The size of the den-
sity gap, the behaviour of the order parametersα andΦ∗10Ψ6 suggest a moderately
weak first-order transition similar to what is seen by Gu et al.108 for the intermedi-
ate regime of the spin-displacement coupling constant strength.
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8.4 Conclusion

We have investigated the phase behavior of hard pentagons using Monte Carlo sim-
ulations. Pentagons constitute a simple model for particles, whose geometry con-
flicts with the simplest (2D) crystal symmetry.

At low pressures pentagons exhibit a positionally and orientationally disordered
isotropic phase. On increasing the pressure, the system undergoes a 2D hard disk-
like phase transition to a positionally ordered, but orientationally disordered rotator
phase. We do not find traces of fivefold symmetry in the orientational order param-
eters.

On further increase of pressure, the non-spherical shape of the particles begins
to influence the phase behavior. The system undergoes a first order phase transition,
in which the orientational degrees of freedom are frozen and, simultaneously, the
lattice becomes distorted.

As pentagons cannot be packed densely in a regular triangular lattice, the posi-
tional order changes at this phase transition. The resulting distortion of the lattice
alleviates the frustration of orientational and positional order. This effect is well
known in the context of the antiferromagnetic Ising model. The transition to the
high density phase in hard pentagons resembles the transition to the ‘striped’ phase
in the antiferromagnetic case.

One way of varying the polygon analog of the spin-displacement coupling con-
stants would be to look at the behaviour of heptagons. Heptagons should have a
lower ‘misalignment’ penalty to displacement (the analog of the spin-displacement
coupling constant) and the rotator phase–striped crystal transition should should
therefore be more strongly first-order.
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Summary

In this thesis, various properties of hard-body solids are explored. Chapters 3
through 6 deal with 3D crystals of hard spheres. Chapter 7 is about about the
melting of the crystalline phase of polydisperse 2D hard disks. Finally chapter 8
discusses the phase behaviour of hard pentagons.

Chapter 2 presents a short review of free energy methods for simulations in
crystalline solids, and of methods to calculate elastic constants. The free energy
methods reviewed are thermodynamic integration and its variants (Einstein inte-
gration) and lattice switch Monte Carlo. For elasticity calculations, both direct cal-
culations of the stress as a function of strain, and fluctuation methods to calculate
the elastic constants are discussed.

In chapter 3 predictions are made about the stacking behaviour of growing hard-
sphere crystals. Crystals of hard spheres can be found either in one of the two
regulare close-packed arrangements: fcc (face-centered cubic) or hcp (hexagonal
close-packed), or in a mixed form, random hexagonal close-packed, rhcp. All of
these packings amount to different ways to stack the hexagonal planes that make
up a hard-sphere crystal. As hard-sphere crystallites in a hard-sphere colloidal
suspension, one can expect a small crystallite to be randomly stacked, because the
bulk-free energy gain of the entropically favoured fcc and the interfacial free energy
associated with an fcc-hcp transition are outweighed by the stacking entropy. As
the crystal gets larger, the ratio of number of layers to the number of particles gets
smaller and the fcc phase should win out. To show this, the bulk free energy of the
two regular stackings is re-calculated (it is around 10−3kBT per particle) and the
interfacial free energy between fcc and hcp is calculated. Based on these values,
a prediction is made for the timescales at which a randomly stacked crystal will
regrow into an purely fcc crystal.

Another aspect of hard sphere fcc-hcp stacking is discussed in chapter 4: the
elastic behaviour of both stackings. Using stress-strain methods in simulation, it is
shown that some of the elastic constants — most notablyC12 — differ by up to 20%
between fcc and hcp. This result is verified by free energy calculations, with the
comparison to the stress-strain results involving some third-order elastic constants.
In addition, the relative distance between the stacking planes of hcp (itsc/a ratio)
is found to be different to the equivalent in fcc, converging to that the fcc value as
density increases. Finally, the influence of polydispersity on the elastic constants is
investigated, and found to be minimal.

Chapters 5 and 6 an analysis of the point defect concentration in hard-sphere
crystals is presented. Chapter 5 considers the monodisperse case and develops a
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theoretical framework for equilibrium point defect (vacancy and interstitial) con-
centrations. Subsequently, interstitial concentrations are calculated (and are found
to be in the order of 10−8) and compared with a simple model.

The vacancy and interstitial concentrations for the polydisperse hard-sphere
crystal are calculated in chapter 6. As polydispersity increases from zero towards
the maximum polydispersity at which the crystal is stable, the vacancy concentra-
tion declines by roughly a factor of two (from around 10−4 to around 5×10−5),
while the interstitial concentration increases by a factor of 106, up to 2×10−2. This
is due to the finite concentration of particles that are small enough to easily become
interstitials. It is found that the free energy associated with an interstitial is mainly
sensitive to the radius of that interstitial, independently of the polydispersity of the
crystal; this means that the small-particle tail of the particle-size distribution of the
crystal will be crucial for the interstitial concentration in real hard-sphere colloidal
crystals.

The melting transition of 2D hard disks is investigated in chapter 7, in the
light of possible KTHNY (Kosterlitz-Thouless-Halperin-Nelson-Young) disloca-
tion-mediated melting. The hard disk system is viewed as a limiting case of the
polydisperse hard disk system, as the melting behaviour as a function of polydis-
persity is explored. This is done because in 3D the hard-sphere system displays a
widening of the density-polydispersity gap upon increasing polydispersity, show-
ing a stronger first-order character. In 2D, the apparent width of the phase transi-
tion (which may in fact be a continuous transition with finite size effects) appears
unchanged as a function of polydispersity. In addition, the point at which the crys-
tal becomes soft enough for dislocations to start unbinding (the point where the
Young’s modulusK = 16π) appears to be located inside the apparent phase transi-
tion gap consistently throughout the range of accessible polydispersities.

Finally, chapter 8 explores the phase behaviour of hard pentagons in 2D, as a
system where the particle symmetry is incommensurate with any crystalline sym-
metry. The system is found to undergo two phase transitions: one liquid to rotator
crystal phase transition similar to the 2D hard disk freezing transition, where the
particles in the rotator crystal are positionally quasi-long-range ordered on a hexag-
onal lattice but rotationally unordered. The second (first-order) transition converts
the rotator crystal to the fully ordered crystal, where the orientations of the pen-
tagons are ordered in a striped fashion. The particle positions in the fully ordered
crystal on a compressed hexagonal lattice, with lower symmetry than the hexago-
nal lattice. A comparison can be made between the second phase transition and the
phase transition in the elastic antiferromagnet on a triangular lattice.
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Het mysterie van de entropie

De thermodynamica, of warmteleer, iséén van de grote triomfen van de negen-
tiende eeuwse fysica en is typisch negentiende eeuws van karakter: een klein aantal
vaste basiswetten (de ‘hoofdwetten van de thermodynamica’) leidt via strikte logis-
che deductie tot een wijd scala aan, in principe, exact meetbare voorspellingen. Met
de thermodynamica kan niet alleen worden uitgerekend hoe efficiënt bijvoorbeeld
een stoommachine kan zijn, maar ook worden voorspeld hoeveel warmer het water
geworden is benedenaan een waterval. De oorsprong van de natuurkundige the-
orieën die in dit proefschrift zijn gebruikt, zijn bijna allemaal te herleiden tot de
thermodynamica en haar ontwikkeling in de negentiende eeuw.

De thermodynamica is oorspronkelijk een stoommachine-theorie; de ontwikke-
ling ervan begon met de publicatie uit 1824 van Sadi Carnot (1796-1832): “Réflex-
ions sur la puissance motrice du feu et sur les machines propresà développer cette
puissance” (“Gedachten over het voortstuwende vermogen van vuur en over de ma-
chines die ertoe geëigend zijn om dit vermogen te ontwikkelen”). Carnot, die de
zoon van een minister van oorlog onder Napoleon was, was geı̈rriteerd over de tech-
nologische achterstand van Frankrijk na de val van Napoleon, vooral wat de stoom-
machine betrof. Hij besloot om grondig uit te zoeken wat de maximale efficiëntie
was van een stoommachine en welke concepten daarvoor belangrijk waren. Hoewel
hij een theorie over warmte aanhing die later fout bleek te zijn (de warmtestofthe-
orie: de gedachte dat warmte een in hoeveelheid behouden vloeistof is) waren zijn
concepten over stoommachine-cycli van groot belang voor de ontwikkeling van de
thermodynamica door Clausius, Joule and Thomson, zo’n twintig jaar later.

De tweede hoofdwet

Van een aantal begrippen, zoals warmte, temperatuur, energie, had men voordat
de thermodynamica werd ontwikkeld geen vastomlijnd idee. De thermodynamica
gaat over deze begrippen, zij het dat er iets wordt aangenomen over het bestaan
van moleculen. Er zijn twee belangrijke hoofdwetten. De eerste hoofdwet is de
bekende wet van behoud van energie, die vastlegt dat de totale energie van het
heelal altijd behouden blijft, in welke vorm dan ook.

De tweede hoofdwet lijkt concreet: er kan geen machine gebouwd worden die
warmte uit de omgeving absorbeert en daaruit kracht genereert. Deze hoofdwet
impliceert echter wel het bestaan van een ander begrip, dat lijkt op energie: de
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entropie. De entropie is, in deze zin, een maat voor de energie die niet kan worden
omgezet in arbeid (bruikbare kracht) en dus verloren gaat aan de omgeving: de
tweede hoofdwet legt dus vast dat de entropie bij elke handeling gelijk blijft, of
toeneemt.

De thermodynamica had warmte aan mechanische energie gekoppeld via tem-
peratuur en entropie; iets wat erg handig is voor het maken van een stoomma-
chine. Bovendien was de thermodynamica was een prachtige allesomvattende the-
orie, hoewel eŕeén schoonheidsfout aan te merken was: niemand wist wat entropie
eigenlijk was.

Is natuurkunde exact?

De kwestie van het wezen van de entropie werd opgelost door de ontdekkingen van
de Oostenrijkse fysicus Ludwig Boltzmann (1844-1906) die in de jaren zeventig
en tachting van de negentiende eeuw zijn statistische mechanica introduceerde. Hij
benaderde natuurkunde op een totaal andere manier.

Boltzmann kwam met een theorie waarin hij voorspelde dat een grote hoeveel-
heid moleculen samen het beste met statistiek kunnen worden beschreven. Deze
statistische beschrijving voorspelde dat er ‘een grote kans’ is dat de tweede hoofd-
wet van de thermodynamica gevolgd werd. Bijvoorbeeld, de kans datéén gram
water iets ronduit tegen de tweede hoofdwet in doetgedurende de leeftijd van het
heelalis te verwaarlozen.

Hij introduceerde deze theorie in een tijd waarin het bestaan van moleculen nog
steeds betwist werd. Belangrijker nog is dat vóór Boltzmann’s theorie de fysica
benaderd vanuit het idee dat haar wetten absoluut geldig waren en dat de voor-
spellingen van deze wetten in principe perfect waren. Het statistische karakter van
deze theorie stuitte op heftig verzet van de fysici uit die tijd, die niet gewend waren
aan natuurwetten die niet absoluut geldig waren. Karakteristiek voor de twintigste-
eeuwse fysica werd echter, dat het toeval niet uitgesloten werd. Toeval een centraal
element geworden in veel moderne theorieën.

Bewegingsruimte en wanorde

In de statistische mechanica van Boltzmann staat het begrip entropie voor de totale
‘bewegingsruimte’ van de moleculen. Omdat er zo ontzettend veel moleculen zijn,
zullen de moleculen overal zitten waar ze kunnen zitten. De maat voor waar ze
kunnen zitten is de bewegingsruimte, die Boltzmann definieerde als de entropie.

Nu wordt het begrip entropie, de bewegingsruimte, vaak geassocieerd met wan-
orde. Dit is niet geheel onterecht; vaak houdt het volledig benutten van de bewe-
gingsruimte namelijk in, dat het systeem ernaar streeft om de deeltjes langs elkaar
heen te laten bewegen. In onze belevingswereld komt dit bijvoorbeeld overeen met
het feit dat een woning altijd ‘vanzelf’ stoffiger wordt en nooit andersom: het wordt
nooit spontaan schoner. Men moet arbeid verrichten om het schoon te maken.
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Het smelten van ijs is een andere illustratie van wanorde door entropie: in ijs
zitten de watermoleculen aan elkaar ‘vast’ doordat ze elkaar in specifieke richtingen
sterk aantrekken. Als de temperatuur hoger dan 0◦ Celsius wordt, krijgen de deel-
tjes genoeg energie om los te komen uit deze aantrekkingskracht en gaat de entropie
domineren: de deeltjes gaan langs elkaar heen bewegen (omdat ze dan de meeste
bewegingsruimte hebben) en ijs wordt vloeibaar.

Omdat het niet mogelijk is uit de wanordelijke bewegingen van moleculen ar-
beid terug te winnen, komt dit idee van entropie overeen met dat van de tweede
hoofdwet van de thermodynamica. Men hoeft nu alleen nog uit te rekenen hoeveel
manouvreerruimte er tot elk molecuul ter beschikking staat om alles te weten te
komen over de gedragingen van een materiaal. Helaas is dat niet zo eenvouding.

Virtuele experimenten

De statistische mechanica is zeer succesvol gebleken. Met behulp van deze theorie
zijn in de loop van de twintigste eeuw praktisch alle evenwichtsfenomenen die
te maken hebben met wisselwerkingen tussen grote aantallen deeltjes bestudeerd.
Verklaringen voor het bestaan van allerlei fases (toestanden van stoffen) en fase-
overgangen (toestandswisselingen van stoffen zoals het smelten van ijs) zijn goed
te begrijpen door het inzicht en het theoretische kader dat de statistische mechanica
biedt.

Het is over het algemeen echter onmogelijk gebleken om ‘exacte’ oplossingen
van de statistische mechanica te krijgen met puur theoretische overwegingen. De
manier om deze exacte oplossingen te berekenen bestaat wel, maar is vaak wis-
kundig te moeilijk om uit te voeren. In plaats van naar deze exacte oplossingen
te streven is het handiger gebleken om slimme aannames te maken en daarop
gebaseerde vereenvoudigingen toe te passen om wiskundige problemen te omzei-
len.

In de jaren vijftig kwam er een nieuw hulpmiddel ter beschikking van fysici.
Computers werden gebruikt om virtuele experimenten uit te voeren die de werke-
lijkheid simuleren. Deze simulaties waren gebaseerd op de theorie van de statis-
tische mechanica en rekenden gewoonweg uit wat voorheen onmogelijk was op te
lossen met pen en papier. Ze maakten het voor het eerst mogelijk experimenten te
doen op modellen in plaats van op echte gassen, vloeistoffen en vaste stoffen.

Een beperking van simulaties is dat ze, in vergelijking met de natuur, langzaam
zijn. Daarom is het extreem tijdrovend om echte moleculen te simuleren en vaak
moeten we het doen met vereenvoudigde versies. Van deze model-moleculen kan
men dan nagaan of ze een gas- en een vloeistoffase hebben, wanneer ze een kristal
vormen, enzovoort. Het nadeel van de eenvoud van de model-moleculen kan dan
ook een voordeel worden: als je het eenvoudigste model-molecuul dat een bepaalde
eigenschap geeft aan het systeem als geheel (het kristalliseert bijvoorbeeld), kan je
er achter komen wat voor die eigenschap belangrijk is en waardoor het veroorzaakt
wordt.
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Harde bollen

Het systeem van harde bollen iséén van de meest eenvoudige modelsystemen. Mo-
leculen worden hier voorgesteld als harde bollen die elastisch met elkaar botsen in
een ‘vat’. Omdat de bollen elkaar alleen voelen als ze botsen, hangt de bewe-
gingsruimte niet af van de temperatuur (de bewegingssnelheid van de bollen), maar
alleen van het totale volume van het ‘vat’ waar de bollen in zitten, en het aan-
tal bollen. Omdat de fase (toestand, zoals vloeibaar of vast) alleen afhangt van
waar de moleculen zich ten opzichte van elkaar bevinden, worden de fases van een
harde-bollen systeem alleen bepaald door de dichtheid (het volume van het vat per
deeltje).

Toen in de jaren vijftig in Californïe de eerste computersimulaties van harde-
bollen systemen werden gedaan door Bernie Alder en Tom Wainwright, zag men tot
ieders verbazing dat een systeem van harde bollen bij hogere dichtheden spontaan
een geordend kristal; het bevriest. Blijkbaar is de bewegingsruimte van de deeltjes
bij hogere dichtheden groter als ze netjes geordend in een kristal zitten dan wanneer
ze (elkaar hinderend) langs elkaar heen kunnen bewegen.

Men was zeer verbaasd over het feit dat kristallen niet per sé vanwege de on-
derliggende aantrekkingskrachten van de moleculen ontstaan (wat overigens in na-
tuurkundeboeken voor de middelbare school nog steeds beweerd wordt) maar van-
wege de extra bewegingsruimte die verkregen wordt door ordening. Zo verbaasd
zelfs, dat op de conferentie waar de resultaten werden gepresenteerd het door de
nieuwe methode van computersimulaties bereikte resultaat door een groot gedeelte
van deelnemers simpelweg niet geloofd werd. Uiteindelijk werd de kwestie zelfs
in stemming gebracht — wat in de natuurwetenschappen hoogst ongebruikelijk is.
Tegenwoordig is het idee dat stoffen bevriezen vanwege de onderlinge afstoting die
de moleculen erin voelen als ze dicht bij elkaar komen (ze hebben een ‘vorm’), net
zoals harde bollen, echter algemeen geaccepteerd.

Vijfhoeken

Wat er gebeurt bij het samendrukken van een systeem waarin deeltjes niet passen
bij de vorm van het kristal, is in een deel van dit proefschrift onderzocht. Het sys-
teem, dat onderzocht is door middel van simulaties, is dat van harde vijfhoeken
(pentagons) op een vlak. Op een vlak willen deeltjes zich namelijk over het al-
gemeen in een driehoekig rooster ordenen, dat niet past bij de vijfhoekigheid van
vijfhoeken.

Bij lage dichtheden bewegen de vijfhoeken vrijelijk langs elkaar heen, zoals te
zien is aan de linkerzijde van afbeelding 8.6 op pagina 82. Ze wijzen alle kanten
op; de ‘richting’ van de vijfhoek is weergegeven als een tint: hoe donkerder, hoe
groter de hoek van het linkerpunt met een horizontale lijn. In het middelste plaatje
staat een uitkomst van een simulatie bij een meer samengedrukt systeem waarbij
de vijfhoeken zich ordenen op een driehoekig rooster, maar ze alle kanten blijven
opwijzen. Pas bij de hoogste dichtheden gaan ze zich ook in de ‘wijsrichting’
ordenen en ontstaat de volledig geordende struktuur van het laatste plaatje. Het
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Figuur 8.8: De fcc (links) en hcp (rechts) stapelingen van harde bollen

resultaat van de simulaties is, dat het rooster niet meer gelijkzijdige driehoekig
is, zoals bij het middelste plaatje, maar een beetje wordt samengedrukt door de
ordening van de ‘wijsrichting’ van de vijfhoeken.

Stapelingen

Bij de harde-bollen-kristallen is er iets speciaals; er zijn meerdere varianten mo-
gelijk. Dit heeft te maken met de beste manier waarop bollen gestapeld kunnen
worden. In 1611 merkte Johannes Keppler (de ontdekker van de wetten van de
planeetbanen) al een overeenkomst op tussen stapels van kanonskogels en de sym-
metriëen van sommige kristallen. De beste manier om harde bollen te stapelen is
namelijk om ze in lagen neer te leggen die driehoekjes vormen (zie bijvoorbeeld
afbeelding 1.1 op pagina 2). Deze lagen worden dan op elkaar gestapeld op zo’n
manier dat de volgende laag in de ’gaten’ van de laag eronder komen te zitten.
Overigens is dit pas in 1999 wiskundig bewezen.

Bizar is het, dat een verzameling kris-kras langs elkaar heen bewegende harde
bollen uiteindelijk spontaan een geordende pakking gaat aannemen. De harde
bollen moeten hier dan wel een keuze maken: er zijn in het in het stapelen van
de lagen twee keuzes. Dat maakt bij twee lagen niet uit, maar bij de derde laag kan
men dan kiezen vooŕeén van de twee stapelingen; de derde laag komtóf precies
boven de eerste laag te liggen (dit heethexagonal close packingof hcp; zie weer
de afbeelding op pagina 2),óf de derde laag komt in de gaten van de tweede laag
te zitten die niet precies boven de eerste laag zitten (dit heetface centered cubic
of fcc), zodat er een regelmatige pakking ontstaat uit bouwstenen van telkens twee
(hcp) of drie (fcc) lagen. Zie figuur 8.8 voor plaatjes van de zo gevormde kristallen.

Hoewel deze twee kristalvormen erg op elkaar lijken (de deeltjes hebben in
beide soorten pakking bijvoorbeeld hetzelfde aantal ‘buren’), is een paar jaar gele-
den gebleken dat het kristal iets meer bewegingsruimte heeft in de fcc pakking:
ongeveer een tiende van een procent meer dan in hcp. Voor dit proefschrift is
berekend dat, als de kristallen klein zijn, de bewegingsruimte van hetkiezenvan de
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lagen belangrijk wordt, en de kristallen een wanordelijke stapeling gaan vormen:
sommige lagen worden fcc en sommige hcp.

Bij grotere kristallen verandert de stapeling langzaam in fcc, omdat dan de
winst van het kiezen van de lagen verdwijnt ten opzichte van de winst van het
meer stabiele fcc: je kan immers maaréén keer per laag een stapeling kiezen. Het
bewegingsruimte-voordeel van de stabielere fcc pakking groeit ondertussen met het
aantal deeltjes in het hele kristal.

Een andere, verrassende uitkomst van simulaties voor dit proefschrift is dat
het verschil in elastische eigenschappen van de twee kristallen erg groot is. De
elastische eigenschappen van een kristal zijn de ‘vervormbaardheden’ in bepaalde
richtingen als het kristal op bepaalde manieren wordt vervormd. Het blijkt dat voor
sommige vervormingen ‘samendrukbaarheid’ met meer dan 20% verschillen tussen
fcc en hcp.

Nu zijn er echte stoffen die bestaan uit bouwstenen die lijken op harde bollen:
collöıden. Stoffen als melk, verf en bloed bestaan uit oplossingen van dit soort deel-
tjes. Omdat ze zo klein zijn, bewegen ze langs elkaar op de manier waarop Boltz-
mann dat beschreven heeft in de statistische mechanica, net als de veel kleinere mo-
leculen. Deze collöıdale deeltjes kunnen, net als de model-harde bollen, kristallis-
eren; een natuurlijk voorbeeld daarvan zijn opalen. Omdat de deeltjes ongeveer
net zo groot zijn als de golflengte van zichtbaar licht, zijn er mogelijk toepassin-
gen voor dit soort kristallen in het bouwen van materialen met speciale optische
eigenschappen; de precieze stapeling van deze kristallen moet dan wel bekend zijn.

Roosterfouten

Voor dit proefschrift zijn simulaties gedaan om uit te rekenen hoeveel roosterfouten
er te verwachten zijn. Dit is van belang voor praktische toepassingen: fouten, zoals
het afwezig zijn van een deeltje (een zogeheten vacature), of het aanwezig zijn van
een extra deeltje tussen de roosterplaatsen van het kristal (een interstitiëel). Roos-
terfouten ontstaan spontaan, omdat de winst in bewegingsruimte voor een roos-
terfout (deze kan dan door het hele vat gaan) groter kan zijn dan het verlies in
bewegingsruimte voor de kristaldeeltjes om de fout heen door de vervorming van
het kristal.

Als elke harde bol even groot is, zijn deze aantallen klein (één op de 4000
roosterplekken heeft geen deeltje, enéén op de 100 miljoen deeltjes is dan een in-
terstitïeel). In een collöıdale suspensie zijn echter niet alle deeltjes even groot. Het
blijkt, dat als daarmee rekening wordt gehouden het aantal interstitiëlen dramatisch
toeneemt als het verschil tussen het grootste en het kleinste deeltje groter wordt:
met een factor van 1 miljoen;́eén op de vijftig deeltjes. Dit gebeurt omdat er
een aantal deeltjes is dat klein genoeg is om makkelijker tussen de roosterplekken
in te gaan zitten. Wil men dus goede colloı̈dale kristallen maken voor optische
toepassingen, zal moet de spreiding van de deeltjesgroottes goed onder controle
moeten houden.

De interstitïelen bewegen verrassend snel door het kristal. Wanneer een inter-
stitiëel de plaats inneemt van een deeltje in het kristal, schuift de feitelijke inter-
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stitiëel een stuk op. In figuur 5.3 op pagina 50 is de (op een vlak geprojecteerde)
positie van de interstitiëel in een kristal gevolgd over langere tijd. Het onderlig-
gende rooster is duidelijk te zien, samen met de sprongen. Vaak wordt er honderden
keren heen en weer gesprongen. Het uiteindelijke effect is een soort ‘moleculaire
stoelendans’.

Dit proefschrift illustreert dat er veel onverwachte rijkdom te vinden is in het
gedrag van verzamelingen eenvoudige deeltjes. Het collectieve gedrag van sim-
pele deeltjes als harde bollen biedt niet alleen verklaringen voor het gedrag van
de ingewikkeldere echte moleculen, maar heeft zijn eigen, unieke eigenschappen
waaraan de drang naar bewegingsruimte ten grondslag ligt.
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Nawoord

Vanaf deze plek wil ik een aantal mensen bedanken voor hun hulp bij het tot stand
komen van dit proefschrift. Op de eerste plaats wil ik mijn woorden richten tot mijn
promotor, Daan Frenkel. Daan, het was een voorrecht om bij jou promovendus te
zijn. Het waren niet alleen jouw snelle inzicht, goede ideeën en suggesties, maar
ook je benadering van wetenschap, waar ik heel veel van geleerd heb. Jouw gave
om de juiste vragen te stellen, die in staat stellen met de juiste middelen te worden
beantwoord, blijft verbazen.

Bela, ook van jouw enthousiaste manier van omgaan met natuurkunde in com-
binatie met je zeer brede kennis, heb ik ontzettend veel geleerd. Ik wil je, samen
met Tanja Schilling bedanken voor de samenwerking die heeft geleid tot hoofdstuk
8.

De discussies met Jacob Hoogenboom over zijn indrukwekende experimentele
resultaten met het groeien van hcp harde-bollen kristallen in de groep van Alfons
van Blaaderen, hebben geleid tot de inspiratie voor hoofdstuk 4.

Even after returning from the ‘Villa’, the group has retained its cohesion and
its great atmosphere. The group has, over the years, consistently been a collection
of very nice people with great scientific curiosity. The eagerness to devote time to
answer questions and discuss ideas has been wonderful to experience. The great
atmosphere in the group has manifested itself in the numerous occasions at which
we saw each other outside the lab, for example playing a game of ‘Kolonisten’ or
seeing a movie; these were great times.

Tijdens mijn tijd als student hier op Amolf had ik het plezier om met Paul Wes-
sels en Jöel Wijngaarde oṕeén kamer te zitten. Nu ben ik blij dat julie mijn paran-
imfen willen zijn. Paul, wij zijn inderdaad samen ‘wetenschappelijk volwassen’
geworden; in niet-wetenschappelijk opgroeien heb jij sinds juli dit jaar al de vol-
gende stap genomen. Joël, nadat je afstudeerde en Us Media begon, hield je me op
gezette momenten in de ‘echte wereld’.

Ron en Joris, julie vermogen om alles te relativeren vond een dankbaar onderw-
erp in mijn onderzoek. Julie verhalen over experimenten met echte muizen maakte
mijn tijd als promovendus in de computerfysica een stuk draaglijker.

Ik wil mijn ouders en mijn broer D́enes bedanken voor hun steun, belangstelling
en motivatie. Als laatste natuurlijk Pieternel; jouw bijdrage tot dit proefschrift is
veel groter dan je waarschijnlijk denkt en jouw bijdrage tot wie ik ben en wie wij
zijn is nog onnoemelijk veel groter.
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